
COMP 321 Fall 2021 Homework 1

For this homework, please hand in hw01.sml and hw01-written.pdf to your Google Drive
handin folder.

1 Dynamic Typing

In Lecture 3, we discussed three approaches to handling situations where an operation is applied to the
wrong kind of data, like xor(17, true). In this problem, you will finish the “dynamic type error” approach to
these situations.

For this problem, we work with the following syntax:

e ::= num(k) | e1 + e2 | true | false | e1 xor e2 | iszero(e) | error

Here, + is supposed to add numbers, xor is boolean exclusive or (true if one input is true and the other
false, and false if both are true or both are false), and iszero is supposed to check if a number is 0 (and return
true), or a non-zero number (and return false). The error term represents a dynamic type error.

In class, we discussed the following operational semantics rules

num(k) done num(k1) + num(k2) 7→ num(k1 + k2)

e1 7→ e′1
e1 + e2 7→ e′1 + e2

e2 7→ e′2
e1 + e2 7→ e1 + e′2

true done false done

true xor true 7→ false false xor true 7→ true true xor false 7→ true false xor false 7→ false

e1 7→ e′1
e1 xor e2 7→ e′1 xor e2

e2 7→ e′2
e1 xor e

′
2 7→ e1 xor e

′
2

Task 1 (10 points). Give operational semantics rules for iszero(e) (you can ignore the possibility of errors
until the next task).

Task 2 (10 points). In class, we discussed the following (incomplete) operational semantics rules for dy-
namic type errors:

error done num(k) xor e2 7→ error error xor e2 7→ error

1

Give sufficient additional rules for errors: xor should error when given a non-boolean, + should error when
given a non-number, and iszero should error when given a non-number, and there should be enough error
propogation rules that progress is true.

Task 3 (10 points). Prove progress for all of the above rules (extending the proof discussed in class):

For all expressions e, either e done or there exists an e′ such that e 7→ e′.

Task 4 (10 points). Implement your progress proof as a step function progress in hw01.sml, inside the
Dynamic module (extending the implementation given in Lecture 3). To test, you can run it interactively
in SMLNJ, e.g.

use "hw01.sml"; open Dynamic;

- progress (Xor(IsZero(Plus(Num 0, Num 1)),False));
val it = Stepped (Xor (IsZero (Num 1),False)) : result

- progress (Xor (IsZero (Num 1),False));
val it = Stepped (Xor (False,False)) : result

- progress (Xor (IsZero (Num 1),False));
val it = Stepped (Xor(False,False)) : result

- progress (Xor (Num 17, True));
val it = Stepped Error : resul

For convenience, we have also provided a many-step function:

- stepUntilDone (Xor(IsZero(Plus(Num 0, Num 1)),False));
val it = False : exp

Note that open “opens” a module, bringing all of the variables defined in it into scope. This way, you
can refer to progress rather than Dynamic.progress, etc.

2 Static Typing

In this section, we will instead address situations where an operation is applied to the wrong kind of input
with a static (compile-time) type system. In class, we discussed the following typing rules:

τ ::= int | bool

num(k) : int
e1 : int e2 : int
e1 + e2 : int true : bool false : bool

e1 : bool e2 : bool
e1 xor e2 : bool

e : int
iszero(e) : bool

Task 1 (15 points). Implement these rules as a function typecheck inside the Static module. The
output of this function is the following:

2

datatype typOrError =
WellTyped of typ

| IllTyped of string

where typecheck(e) should return WellTyped(τ) iff e : τ , and should return IllTyped(s) with some
informative error message s otherwise.

Here are some example tests:

- use "hw01.sml"; open Static;

- typecheck (Xor(IsZero(Plus(Num 0, Num 1)),False));
val it = WellTyped Bool : typOrError

- typecheck (Xor(IsZero(Plus(Num 0, False)),False));
val it = IllTyped "second argument of Plus must be an int" : typOrError

Task 2 (5 points). Since the static type system will rule out errors before the program is run, the operational
semantics is simpler: none of the error rules are necessary. Implement the operational semantics in a function
progress inside the Static module; this version of progress can assume that its input is well-typed.
(You should not run the type checker from your progress function; you should assume that someone
else has run it, and is giving your progress function, as input, an expression that has already passed
the type checker.) Copy your solution from Task 1.4 and delete the unnecessary parts.

Task 3 (10 points). Show the cases of the type preservation theorem pertaining to your operational semantics
rules from Task 1.1 for iszero(e). Recall from Lecture 4 that type preservation says

For all expressions e and types τ , if e 7→ e′ and e : τ then e′ : τ .

and that the proof is by induction on the derivation of e 7→ e′.

3

