
COMP 321: Principles of Programming Languages, Fall 2021
Homework 2: Variables

In this assignment, you will do progress and preservation proofs and an implementation for a language
with variable binding.

In particular, the language we work with will have

• number constants and addition (like last week’s homework)

• string contstants (written like "abc") and string append (written s1 ˆ s2, e.g. "A" ˆ "BC"
should compute the string "ABC")

• variable uses and let-binding, as discussed in this week’s lectures

This language is called E in Chapter 4 and Section 5.2 and and Chapter 6 of PFPL, though

1 Progress and Preseravtion

Suppose we extend E with a primitive two-binding let, for example

let x be 7
y be 8

in
x + y

end

should evaulate to 15. This is mostly the same as two nested single-binding lets:

let x be 7 in
let y be 8 in

x + y
end

end

but for the two-binding version, the intended scoping rule is that x and y are both only in scope in the body
of the let, and x is not in scope in the definition of y. For example, the nested single-binding lets

let x be 7 in
let y be x + 1 in

x + y
end

end
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are well-scoped, but the two-binding let

let x be 7
y be x + 1 in
x + y

end

is not. (This kind of let allows for parallel evaluation of the two let-bound expressions, if you heard about
that in COMP 212, but we won’t do that here.) As a formal abstract syntax tree, we write let2(e1, e2, x.y.e3)
for let x be e1 y be e2 in e3 end.

Task 1 (5%). Give a typing rule for let2, i.e. fill in the premises of

?
Γ ` let2(e1, e2, x.y.e3) : τ3

typing-let2

Hint: use the typing rule for single-binding let in Figure 2 as a starting point.

Task 2 (15%). Give operational semantics rules for let2(e1, e2, x.y.e3). Your semantics should evaluate the
two bindings in left-to-right order, and should be call-by-value.

Task 3 (15%). For a language with variables, the progress theorem is:

For all e, τ , if · ` e : τ then either e done or there exists an e′ such that e 7→ e′.

Here, the notation · ` e : τ means that e has type τ in the empty context.
Progress is proved by rule induction on the derivation of · ` e : τ . Prove the case of progress for your

typing rule typing-let2 for let2(e1, e2, x.y.e3) from Task 1.

Task 4 (15%). For a language with variable binding, the preservation theorem is:

For all e, e′, τ , if e 7→ e′ and · ` e : τ then · ` e′ : τ .

Preservation is proved by rule induction on e 7→ e′. Prove the cases of preservation for your operational
semantics rules from Task 2.

You may use the following lemmas:

• Inversion of typing: For all e1, e2, x, y, e3, τ , if · ` let2(e1, e2, x.y.e3) : τ then [the premises of the
rule in your answer to Task 1].

• Weakening: For all Γ,Γ′, e, τ, τ1, x, if Γ,Γ′ ` e : τ and x 6∈ Γ,Γ′ then Γ, x : τ1,Γ
′ ` e : τ .

• Substitution: For all Γ,Γ′, e, x, τ, τ ′ , if Γ, x : τ,Γ′ ` e′ : τ ′ and Γ ` e : τ then Γ,Γ′ ` e′[e/x] : τ ′

2 Implementing Variables

In this problem, you will implement a type checker and operational semantics for E.
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2.1 Substitution

The syntax.sml provides an implementation of the abstract syntax of the language.
Variable names are represented by strings. There is a function freshName that uses a global mutable

memory cell to generate a “fresh” name, one that has never been returned by this function before; this is
used for α-converting.

The types of the language (typ) are numbers and strings.
The expressions are variables, number constants, string constants, addition of numbers, concatenation

of strings, and let-bindings.

Task 1 (20%). Implement a function

(* subst (e, (e’,x)) implements
the capture-avoiding substitution e[e’/x] *)

val subst : exp * (exp * name) -> exp

that implements capture-avoiding substitution for expressions in this language.
For reference, the mathematical definition of this function is in Figure 1. For these definitions, we use

the formal abstract-syntax-tree style notation, rather than the concrete-syntax notation that I use in class.
The abstract syntax is

e ::= x | num[k] | str[s] | plus(e1, e2) | cat(e1, e2) | let(e1, y.e2)

which corresponds to the concrete syntax

e ::= x | k | "s" | e1 + e2 | e1 ˆ e2 | let x be e1 in e2 end

You will receive 15/20 for this problem if your substiuttion function works correctly for substituting
closed (no free variables) expressions, with no shadowing (i.e. every let binds a distinctly named variable
— this is what the parser produces when it reads in a file), with the assumption that the variable being
substituted for is different from all of the bound variables.

For full credit, you should also implement a correctly capture-avoiding substitution that works for open
(has free variables) expressions that potentially do have shadowing. To do this, you will need to implement
α-conversion, i.e. changing the names of bound variables. The easiest way to do this is to implement a func-
tion swap(e,(x,y)) that swaps the two names x and y everywhere where they occur in the expression,
including binding sites. For example, swapping x and y in the expression

let x be 5 in let y be 6 in x + y end

should give

let y be 5 in let x be 6 in y + x end

Then you can use swapping to “freshen” bound variables to make the x 6= y and y 6∈ e conditions on the
definition for let-binding be true.
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x[e/x] = e

x 6= y

y[e/x] = y

num[n][e/x] = num[n] str[s][e/x] = str[s]

e1[e/x] = e′1 e2[e/x] = e′2
plus(e1, e2)[e/x] = plus(e′1, e

′
2)

e1[e/x] = e′1 e2[e/x] = e′2
cat(e1, e2)[e/x] = cat(e′1, e

′
2)

e1[e/x] = e′1 x 6= y y 6∈ e e2[e/x] = e′2
let(e1, y.e2)[e/x] = let(e′1, y.e

′
2)

Figure 1: Substitution for E.

x : τ ∈ Γ
Γ ` x : τ

Γ ` num[n] : number Γ ` str[s] : string

Γ ` e1 : number Γ ` e2 : number

Γ ` plus(e1, e2) : number

Γ ` e1 : string Γ ` e2 : string

Γ ` cat(e1, e2) : string

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(e1, x.e2) : τ2

Figure 2: Typing rules for E.
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num[n] done str[s] done

plus(num[m], num[n]) 7→ num[m+ n] cat(str[s], str[t]) 7→ str[st]

e1 7→ e′1
plus(e1, e2) 7→ plus(e′1, e2)

e1 done e2 7→ e′2
plus(e1, e2) 7→ plus(e1, e

′
2)

e1 7→ e′1
cat(e1, e2) 7→ cat(e′1, e2)

e1 done e2 7→ e′2
cat(e1, e2) 7→ cat(e1, e

′
2)

e1 7→ e′1
let(e1, x.e2) 7→ let(e′1, x.e2)

e1 done

let(e1, x.e2) 7→ e2[e1/x]

Figure 3: Operational semantics for E.

2.2 Implementing the Type Checker

Task 2 (20%). Next, in check.sml you will implement a type checker, which implements the rules in
Figure 2.

Like last week’s homework, given an expression e, the type checker should return a result, which is
either WellTyped t if e : t or IllTyped if e does not have a type. This week, you do not need to
provide error messages for the type errors.

Like last week, the final function check only needs to work on “closed” expressions, ones with no
free variable occurences. However, the main work will be in a function checkOpen that checks an “open”
expression (an expression with free variables) relative to a given context Γ. We represent contexts as lists
of variable name/type pairs. E.g. the context (x : number, y : string) might be represented by a list
[("x",Number), ("y",String)]. The order of entries in the list is up to you. You should maintain
the invariant that a particular name occurs at most once in the list, but you can also assume that exp you are
given does not do any shadowing (the support code that reads in concrete syntax strings will α-convert all
let-bindings to use a unique variable name).

2.3 Operational Semantics

Task 3 (10%). Next, in step.sml, implement the progress function.
Like last week, given a closed well-typed expression e, the function progess should return Done if e

is done, or return Stepped e’ if there is an e’ such that e |-> e’. Much of the code will be similar
to last week, with new cases for let.

In Figure 3, we include the operational semantics of E for reference.

2.4 How to test

In the support code, we have supplied a parser for a concrete syntax for E as well as several functions to
help you test your code (see the Top module)
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val loop_print : unit -> unit (* print the same expression back *)
val loop_type : unit -> unit (* just type check *)
val loop_eval : unit -> unit (* type check and show the final value when done *)
val loop_step : unit -> unit (* type check and show all steps of evaluation *)

(* similar, but read a .exp source file *)
val file_print : string -> unit
val file_type : string -> unit
val file_eval : string -> unit
val file_step : string -> unit

The loop versions run an interactive input loop for E, like SMLNJ does for SML. The file versions
are like use’ing a file. We have provided one E file for you to load, examples.exp. Note that the final
expression in this file is ill-typed, so it is OK if your progress function fails on it.

For example, once you’re done, you will be able to do this to type check and step through the execution
of an expression:

- Top.loop_step();
Exp>let x be 4 in x + x end;

let x24 be 4 in
x24 + x24

end : num;

Press return:

4 + 4 : num;

Press return:

8 : num;

To run all of the provided tests, do

- Top.file_step "examples.exp";

and hit enter repeatedly, and check that each step of evaluation and its type looks right. You can also do

- Top.file_eval "examples.exp";

to quickly see the final values and

- Top.file_rtype "examples.exp";

to run only run the type checker, not the operational semantics (to test that task before doing the next one).
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