
COMP 321: Principles of Programming Languages, Fall 2021
Homework 3: Gödel’s T

To hand in, please upload

hw03/check.sml
hw03/step.sml
hw03/arith.t
hw03/hw03-written.pdf

to your Google Drive handin folder (note the sub-folder this week).

1 Implementing T

In Chapter 9 of PFPL, you can find the typing and operational semantics for the language with function
and natural number types, which is called Gödel’s T. In this task, you will implement a type-checker and
evaluator for this language—the same task as from HW2, but for a richer language.

For this week, you are given an implementation of expressions in syntax.sml. This implementation
includes subst for substitution, which should be analogous to your solution from last week’s homework.

Task 1 (20%). Program a typechecker for Gödel’s T. We have provided a stub for you in check.sml.

Task 2 (25%). Implement the operational semantics for T. Once again, we have provided stubs for you in
step.sml.

In the support code, we have supplied a parser for a concrete syntax as well as several functions to help
you test your code (see the Top module, and note that a couple of these have changed from last week):

signature TOP =
sig

(* interactive loop *)

(* just print the same expression back *)
val loop_print : unit -> unit

(* just type check *)
val loop_type : unit -> unit

1



(* type check the input program, then,
if it was well-typed,
try to evaluate the program to a value, and then
show the final value and its type (which is
determined by re-typechecking the value).

*)
val loop_eval : unit -> unit

(* Starting with the initial program,
show each step of evaluation with its type
(which is determined by re-typechecking after each step).
Stops when the result of a step is ill-typed.

By preservation, these types *should* all be the same,
but if they’re not, it can be helpful for finding bugs.

*)
val loop_step : unit -> unit

(* *Ignoring the type checker*,
try to evaluate the program to a value,
and then show the final value.

You can use this to test your operational semantics
if you want to work on that first or
if your type checker isn’t working.

*)
val loop_eval_no_typechcker : unit -> unit

(* *Ignoring the type checker*, show each step of evaluation.

You can use this to test your operational semantics
if you want to work on that first or
if your type checker isn’t working.

*)
val loop_step_no_typechecker : unit -> unit

(* same as above but read an EXP source file *)
val file_print : string -> unit
val file_type : string -> unit
val file_eval : string -> unit
val file_step : string -> unit
val file_eval_no_typechecker : string -> unit
val file_step_no_typechecker : string -> unit

end; (* signature TOP *)

2



Some examples are in the file arith.t. For example:

let double be lam x:nat.
rec x { z => z

| s _ with r => s s r }
in

double @ 5
end;

In the concrete syntax, functions are written lam x:t.e. Application is written with an infix @ sign;
application is left-associative, so f @ x @ y means (f @ x) @ y. Recursion is written
rec e { z => e0 | s x with y => e1}. let is the same as last week.

2 Definability

Next, you will write a few programs using your implementation. In the file arith.t:

Task 1 (5%). Define a function add : (nat -> (nat -> nat)) such that add @ x @ y com-
putes the sum of x and y. You solution should be of the form

let
add be ...

in
...

end

and you can test the function by writing a test case in the body of the let.

Task 2 (5%). Define a function mult : (nat -> (nat -> nat)) such that mult @ x @ y com-
putes the product of x and y. You solution should be of the form

let
add be ...

in

let

mult be ...
in

...
end

end

because you will need to use your solution from the previous task.

Task 2 (5%). Define a function sub : (nat -> (nat -> nat)) such that sub @ x @ y is equal
to x − y assuming that x is ≥ y (otherwise, the behavior is unspecified).

3



3 Progress and Preservation for Lists

Suppose we extend Gödel’s T with a type of lists of natural numbers:
New expressions:

nil
cons(e1, e2)
listrec(e0, x.xs.r.e1, e)

With the following operational semantics:

nil done

e1 done e2 done

cons(e1, e2) done

e1 7→ e′1
cons(e1, e2) 7→ cons(e′1, e2)

e1 done e2 7→ e′2
cons(e1, e2) 7→ cons(e1, e

′
2)

e 7→ e′

listrec(e0, x.xs.r.e1, e) 7→ listrec(e0, x.xs.r.e1, e
′) listrec(e0, x.xs.r.e1, nil) 7→ e0

cons(eh, et) done

listrec(e0, x.xs.r.e1, cons(eh, et)) 7→ e1[eh/x][et/xs][listrec(e0, x.xs.r.e1, et)/r]

Task 1 (10%). Give typing rules for nil and cons and listrec.

Task 2 (15%). Recall the progress theorem:

For all e, τ , if · ` e : τ then either e done or there exists an e′ such that e 7→ e′.

Progress is proved by rule induction on the derivation of · ` e : τ . Prove the case of progress for your
typing rule for listrec (you don’t need to do the cases for nil and cons).

Task 3 (15%). Recall the preservation theorem:

For all e, e′, τ , if e 7→ e′ and · ` e : τ then · ` e′ : τ .

Preservation is proved by rule induction on e 7→ e′. Prove the cases of preservation for listrec (you don’t
need to do the cases for nil and cons).

You may use the following lemmas:

• Inversion of typing: Note where you are using inversion.

• Weakening: For all Γ,Γ′, e, τ, τ1, x, if Γ ` e : τ and x 6∈ Γ,Γ′ then Γ, x : τ1,Γ
′ ` e : τ .

• Substitution: For all Γ,Γ′e, x, τ, τ ′ , if Γ, x : τ,Γ′ ` e′ : τ ′ and Γ ` e : τ then Γ,Γ′ ` e′[e/x] : τ ′

4


