
COMP 321 Homework 4, Fall 2021:
Pattern Matching

In this homework, you will implement nested pattern matching, as you are probably familiar with from
SML. This means that you can case on types like booleans, numbers, strings, lists, tuples, and datatypes
in an arbitrarily “deep” way. Many languages have adopted this kind of pattern matching — even Python is
getting in on the fun.1.

For example, the code for merging two sorted lists into a sorted list (which you might have seen in
mergesort)

fun merge (l1 : int list , l2 : int list) : int list =
case (l1 , l2) of

([] , l2) => l2
| (l1 , []) => l1
| (x :: xs , y :: ys) =>

(case x < y of
true => x :: (merge (xs , l2))

| false => y :: (merge (l1 , ys)))

pattern-matches on a pair of lists. We call each p => e separated by a vertical bar a “branch”. Each branch
consists of a pattern p and a “right-hand side” expression e. In this code, the three branches of the case on
(l1,l2) distinguish the cases where

1. l1 is empty and l2 is any list

2. l1 is any list and l2 is empty

3. l1 has at least one element and l2 has at least one element

The patterns bind the variables in them in the right-hand side, so in the final branch, the right-hand side can
use x to refer to the first element of l1, and xs to refer to the rest of l1, etc.

Patterns can “open up” as much of a data structure as you want them to; e.g. we could refine the match
to

case (l1 , l2) of
([] , l2) => e1

| (l1 , []) => e2
| (x :: [] , y :: ys) => e3
| (x :: x’ :: xs , y :: ys) => e4

1https://www.python.org/dev/peps/pep-0636/

1

https://www.python.org/dev/peps/pep-0636/

to distinguish the cases

1. l1 is empty and l2 is anything

2. l1 is anything and l2 is empty

3. l1 has one element and l2 has at least one element

4. l1 has at least two elements and l2 has at least one element

etc.
Intuitively, a case expression steps by finding a pattern that matches the value being cased on. A value

matches a pattern when the value has the same structure as the pattern up to the spots marked by variables.
The case then steps to the corresponding right-hand side with the parts of the value corresponding to the
variables in the pattern substituted in. Patterns can overlap, in the sense that two different patterns can
match the same value. For example in

case ([] , []) of
([] , l2) => 1

| (l1 , []) => 2
| (x :: xs , y :: ys) => 3

the value ([],[])matches both the first branch and the second branch, so without some further stipulation
it is unclear which branch should be selected. We adopt a first-match semantics, which means that the
first/topmost matching branch is selected — so in this case, the value is 1 and not 2.

In addition to understanding pattern matching, there are a few auxiliary goals for this homework. First,
you will learn how datatypes can be encoded using products, sums, and recursive types. This encoding
will shorten your implementation of pattern matching: you will only need to write code for constructors
for product/sum/recursive types, not for arbitrary datatypes. Second, you will practice using fixed points to
define recursive functions, and implement a type checker and operational semantics for them. Third, you
will practice using exceptions for control flow in SML (see Lecture 15/16). This will simplify the code for
your type checker and pattern matcher.

1 Syntax

The language you will implement in this homework is called FPC in PFPL Chapter 20, but we extend it with
nested pattern matching.

This section describes the code provided in syntax.sml.

1.1 Types

For this assignment, the types are mostly the same as in your midterm code, except we also add recursive
types and type variables:

datatype typ =
...

| Rec of name * typ
| TVar of name

2

In concrete syntax, we write rec a is tau for the abstract syntax Rec(a,tau). The type variable
name a is bound in tau and stands for a type. In concrete syntax, we write just a for the type variable,
which is translated to the abstract syntax TVar a. Note that the concrete syntax for product/sum/function
types requires parentheses around them, e.g. you have to write (nat -> nat) and not nat -> nat.

For example, the type nat of natural numbers is written

rec a is (Unit + a)

in concrete syntax, and as (for some variable name a:name)

Rec(a, Sum(Unit, TVar a))

in SML. This recursive type satisfies the type equation that nat is bijective with unit + nat, where we
think of inleft <> as zero and inright e as the successor of e.

We have provided

(* substTyp(tau, (sigma,a)) is the substitution tau[sigma/a] *)
val substTyp : typ * (typ * name) -> typ

(* check if two types are alpha-equivalent *)
val alphaEquivTyp : typ * typ -> bool

which perform substitution of types for type variables, and test alpha-equivalence of types. Because types
have bound variables now, it is no longer enough to use SML = to test if two types are equal, because e.g.
Rec(b, Sum(Unit, TVar b)) also represents the natural numbers.

1.2 Patterns

We represent patterns by the following datatype:

datatype pat =
TrivPat

| PairPat of pat * pat
| InLeftPat of pat
| InRightPat of pat
| FoldPat of pat
| VarPat of name
| WildPat
| AsPat of pat * name

These correspond to the following concrete syntax:

TrivPat <>
PairPat(p1,p2) < p1 , p2 >
InLeftPat(p) inleft p
InRightPat(p) inright p
FoldPat(p) fold p
VarPat(x) x
WildPat _
AsPat(p,x) name p as x

3

1.3 Expressions

The new expressions that we haven’t seen before are

datatype exp =
...

| Case of exp * (pat * exp) list
| Fold of (name * typ) * exp
| Fix of typ * (name * exp)

These correspond to concrete syntax as follow:

Case(e, [(p1,e1),...,(pn,en)]) case e { p1 => e1 | ... | pn => en }
Fold((a,t), e) fold[rec a is t] e
Fix(t,(x,e)) fix x:t.e

For case analysis, we represent the branches by a list of pairs of a pattern and an expression.

Recursion via Fix Unlike in previous assignments, we do not build structural recursion into case analysis
(a la rec in Gödel’s T). Instead, we have general recursion via fix x:t.e. For example, the double
function is written like this:

let
double be fix d:(nat -> nat).

lam x : nat.
case x { 0 => 0 | s y => s s (d @ y) }

in
double @ 4

end ;

and this expression evaluates to 8. At first, it may seem odd that there are two names for double, the name
double used in the body of the let and the name d used for the recursive calls. This is because, in an SML
function declaration

fun double(x) = case x of 0 => 0 | _ => 2 + double(x-1)
val z = double 4

there are really two different scopes for double: it is bound in the body of the function itself (for recursive
calls) and in the subsequent code. The above syntax separates these into the let-bound name double (the
subsequent code) and the fix-bound name d (the recursive calls). Of course, we can always alpha-convert
these to be the same

let
double be fix double:(nat -> nat).

lam x : nat.
case x { 0 => 0 | s y => s s (double @ y) }

in
double @ 4

end ;

4

Datatypes as recursive types Above, we said that we will use the type rec a is (Unit + a) to
represent natural numbers. This means the numbers are defined as follows:

0 fold[rec a is (Unit + a)](inleft[rec a is (Unit + a)] <>)

1 fold[rec a is (Unit + a)](inright[Unit](
fold[rec a is (Unit + a)](inleft[rec a is (Unit + a)]<>)))

2 fold[rec a is (Unit + a)](inright[Unit](
fold[rec a is (Unit + a)](inright[Unit](

fold[rec a is (Unit + a)](inleft[rec a is (Unit + a)]<>)))))

...

Roughly, inleft <> corresponds to 0, and inright e corresponds to 1 + e. However, each sum
constructor occurs with a fold constructor for the recursive type, so leaving off the type annotations we get

0 fold(inleft <>)

1 fold(inright(fold(inleft <>)))

2 fold(inright(fold(inright(fold(inleft <>)))))

...

By default, the type annotations are not printed out when expressions are displayed, but there is a flag in
print.sml that you can change if you want to see them.

Simultaneous substitution To implement pattern matching, it is convenient to use simulatenous substi-
tution e[e1/x1...en/xn]. The idea here is that the variables x1...xn are all free in e, but not in e1...en. The
simultaneous substitution replaces each xi with the corresponding ei. This could be implemented as an
iterated substitution e[e1/x1][e2/x2]...[en/xn] (generalizing the two-binding let problem from before) but
it is easier and more efficient to do the simultaneous substitution in one pass. This is implemented for you
in

type ssubst = (exp * name) list
val subst : exp * ssubst -> exp

2 Type Checker

Note: as usual, the type checker and operational semantics can be implemented in either order, so feel free
to work on the next section first if you want.

To simplify the code for type errors, we will use exceptions rather than the typOrError type from
previous assignments. This means your type checker has the following type:

exception TypeError of string

5

(* Given a context gamma and expression e,
return tau if there is a tau such that gamma |- e : tau, or
raise TypeError otherwise *)

val check : Syntax.exp -> Syntax.typ

The basic idea is to raise the exception TypeError (ideally with an informative error message) when-
ever you would have returned IllTyped. Using exceptions simplifies the code because you don’t need to
explicitly propagate the type errors. E.g. for let, instead of

| Let (e1, (x,e2)) =>
(case (checkOpen (g, e1)) of

WellTyped t1 => checkOpen (((x,t1) :: g), e2)
| IllTyped => IllTyped)

we can just write

| Let (e1, (x,e2)) => checkOpen (((x,checkOpen (g, e1)) :: g), e2)

and any type errors that arise while checking e1 will be automatically raised.

Task 1 (5%). Write the cases of checkOpen for Var, Lam, App, Let (as above), Triv, Pair, InLeft,
InRight. Hint: start with your midterm solution code for these and modify it to use exceptions. Hint 2:
because a program is well-typed only if all of its sub-programs are well-typed, you should never need to
handle an exception.

Task 2 (10%). Write the cases of checkOpen for fix (rule 19.1g on page 169 of PFPL) and fold (rule
20.2a on page 20.1 of PFPL).

2.1 Type checking Pattern Matching

In words, we type check a case expression case(e){p1 ⇒ e1 | . . . | pb ⇒ eb} as follows:

1. Type check e to see that it has some type τ .

2. For each branch i, check that the pattern pi is a pattern for that type τ , binding some context ∆i, and
then check that using the variables in ∆i, each right-hand side ei has some type σ.

3. The case itself has type σ.

Formally:
Γ ` e : τ ∀i, (pi : τ binding∆i) and Γ,∆i ` ei : σ

Γ ` case(e)p1 ⇒ e1 | . . . | pb ⇒ eb : σ

Intuitively, p : τ binding∆ is defined by

• x is a pattern of type τ for any τ , binding x : τ .

• _ is a pattern of type τ for any τ , binding nothing.

• <> is a pattern of type Unit, binding nothing

6

• inleft p is a pattern of type t1 + t2 if p is a pattern of type t1, and it binds what p binds

• inright p is a pattern of type t1 + t2 if p is a pattern of type t2, and it binds what p binds

• < p1, p2 > is a pattern of type t1 * t2 if p1 is a pattern of type t1 and p2 is a pattern of type
t2, and it binds all the variables bound by both of them.

• fold p is a pattern of type rec a is t if p is a pattern of type t [rec a is t / a],
and it binds what p binds.

Task 3 (20%). Implement the case of checkOpen for case, with its helper function checkPat(p,tau)
implementing the relation p : τ binding∆. You might want to write out inference rules for p : τ binding∆
formalizing the above informal description, like

x : τ binding (x : τ) 〈〉 : unit binding ·
e : τ1 binding∆

inleft(e) : τ1 + τ2 binding∆ . . .

to guide your implementation of checkPat. Hint: the flow of information in checkPat is very different
than checkOpen: for checkOpen, the context and expression are inputs, and the type is an output. For
checkPat, the pattern and its type are inputs, and the context that it binds is an output.

For testing, there are examples in examples.fpc and the Top.file_type etc. commands are the
same as in the previous homework.

3 Operational Semantics

We will not convert the progress function to use exceptions — this wouldn’t help much, because most
cases of it need to check whether the recursive calls return done or a step. So, many of the cases of
progress for this language are unchanged from the midterm code.

Task 1 (10%). Implement the cases of progress for fold(20.3a, 20.3b on page 178 of PFPL) and fix
(19.3h on page 170 of PFPL).

3.1 Stepping pattern matching

Intuitively, case(e){p1 ⇒ e1 | . . . | pb ⇒ eb} steps by first stepping e until it is done, and then finding the
first pi that matches e. Matching a pattern p against an expression e produces a simultaneous substitution
[e1/x1, . . . , ek/xk] for the variables ∆ = (x1 : τ1 . . . xk : τk) bound by the pattern p, where each ej has
type τj . In words,

• x matches any e

• _ matches anything

• <> matches <>

• inright p matches inright[...] e if p matches e

• < p1, p2 > matches < e1 , e2 > if p1 matches e1 and p2 matches e2

7

• fold p matches fold[...] e if p matches e

It’s up to you to write out how to calculate the simultaneous substitution for each match. If you like, you
can write out inference rules for a relation

pmatches ewithθ

If p : τbinding∆ and e : τ then pmatches ewith θ should mean that θ is a simultaneous substitution for the
variables ∆ such p[θ] = e. I.e. if ∆ = x1 : τ1 . . . xn : τn, then θ = e1/x1 . . . en/xn is a list of expressions
where each ei : τi, and substituting these into p produces e.

Task 2 (20%). Implement the function match (p : pat, e : exp) : ssubst that determines if
a pattern matches an expression, and returns the simultaneous substitution for all variables bound by the
pattern — i.e. it implements pmatches ewith θ. If the pattern does not match the expression, raise the
DoesntMatch exception.

The operational semantics for case is:

e 7→ e′

case(e){p1 ⇒ e1 . . . pn ⇒ en} 7→ case(e′){p1 ⇒ e1 . . . pn ⇒ en}

e value pimatches ewith θ (∀j < i.¬(pj matches e))

case(e){p1 ⇒ e1 . . . pn ⇒ en} 7→ ei[θ]

Task 3 (10%). Implement the case of progress for case. Hint: at some point you will want to use the
syntax e1 handle DoesntMatch => e2 to handle the DoesntMatch exception. You can assume
that the patterns are exhaustive, which means that every value matches at least one pattern pi.

For testing, there are examples in examples.fpc and the Top.file_eval etc. commands are the
same as in the previous homework.

4 Derived Forms/Examples

4.1 Derived Forms

Above, you implemented pattern matching only for sums, products, recursive types, which is theoretically
sufficient to express all datatypes but practically a little hard to work with. We can very quickly get pat-
tern matching for familiar types like booleans, natural numbers, lists by defining these types to be certain
sum/product/recursive types, which means you don’t need to extend the type checker or the operational se-
mantics for them. For this assignment, we will hardcode a few such definitions in the SML implementation
(a better solution would be for the language to have a general datatype mechanism, so that the programmer
could define these in the language, rather than you defining them in the implementation).

For example, in syntax.sml, booleans are defined by

val boolTyp = Sum(Unit,Unit)
val trueExp = InLeft(Unit,Triv)
val falseExp = InRight(Unit,Triv)
val truePat = InLeftPat(TrivPat)
val falsePat = InRightPat(TrivPat)

8

That parser translates the concrete syntax bool and true and false to these, so, for example, you
can write

case true {true => false | false => true};

instead of the expanded version

case inleft[unit]<> { inleft <> => inright[unit]<>
| inright<> => inleft[unit]<>};

(Note that these definitions are transparent in the sense that the definitions of true and false are
exposed; you can also write

case true { inleft <> => inright[unit]<>
| inright<> => inleft[unit]<>};

One other thing that the SML datatype mechanism does is that it hides the implementation of the datatype
from the programmer, using something called existential types, which we haven’t covered yet.)

Task 1 (10%). Define nat and list (lists of natural numbers) and their constructors and patterns similarly
in syntax.sml. nat should be rec t is (unit + t) while list should be
rec t is (unit + (nat * t)) (see Lecture 13/14).

The concrete syntax is nat, z (zero), s (successor), list, nil, cons.

4.2 Programming in FPC with pattern matching

Task 2 (5%). We did not include product projections projleft and projright, and unfolding of
recursive types unfold in FPC-with-pattern-matching, because they are special cases of pattern matching.
In tasks.fpc, show how they are defined (your code should work for any product/recursive types, but
you can type it as ((nat * nat) -> nat) for the projections and (nat -> (unit + nat)) for
the unfold – we don’t have polymorphism in FPC, so we can’t yet state that these work for all types).

Task 3 (10%). In tasks.fpc define less-than (at type ((nat * nat) -> bool))2 by recursion,
and then translate the code for merge from the beginning of this handout from SML to FPC-with-pattern-
matching.

5 Extra credit

Task 1 (a little%). The parser and syntax datatypes include a constructor for “as patterns” AsPat(p,x),
written in concrete syntax name p as x. The idea is that this matches the same things as p matches, but
in addition to binding what p binds, it binds x to the whole value that p matches. For example,

case p { cons <x, name cons<y,xs> as tail > => ...}

2In an older version this said to return nat instead of bool; that is fine too. Before adding booleans to the assignment I was
thinking that the function would return 0 or 1 as false and true.

9

matches a list with at least 2 elements, and binds x to the first element, binds y to the second element, binds
xs to all of the other elements, and tail to all but the first element (i.e. to cons<y,xs>). Extend your
type checker and operational semantics to this.

Task 2 (a little%). In FPC, fix x:t.e is actually definable from recursive types, as in Section 20.3 of
PFPL. In tasks.fpc, code the fixed point of any functional f : ((nat -> nat) -> (nat -> nat)),
and show how to use it to define the double : (nat -> nat) function without using the built-in fix.
Hint: the construction in the book needs to be modified a little to work for a function f instead of a expres-
sion with a free-variable x.e, because the definition in the book uses a call-by-name substitution for the
variable.

Task 3 (a lot%). Above, we assumed that every case(e){p1 ⇒ e1 | . . . | pn ⇒ en} was exhaustive: if e : τ ,
then every value of type τ matches some pattern pi. Implement an exhaustiveness checker that takes a list
of patterns and returns true if they are exhaustive and false otherwise.

10

	Syntax
	Types
	Patterns
	Expressions

	Type Checker
	Type checking Pattern Matching

	Operational Semantics
	Stepping pattern matching

	Derived Forms/Examples
	Derived Forms
	Programming in FPC with pattern matching

	Extra credit

