
COMP 321 Homework 5, Fall 2021:
Exceptions via Sum Types

In the previous homework, you got some practice using exceptions. In this homework, you will complete
the translation of exceptions to sum types sketched in Lecture 17. This is an example of a compiler pass
or language to language translation. This means there will be two programming languages in play in this
assignment:

• The source language is the input to the translation. This will be a variant PCF with exceptions.

• The target language is the output of the translation. This will be a variant of PCF with product and
sum types — as in the midterm or the previous homework. If you like, you can assume the target
language has nested pattern matching, as you implemented in Homework 4.

1 Source Language

The source language contexts, types, and expressions are defined as follows:

Γ ::= · | Γ, x : τ | Γ, x :n τ
τ ::= nat | τ1 → τ2
e ::= x | u | zero | succ(e) | case{e, e0, x.e1} | λx : τ.e | e1 e2 | fixx : τ.e | raise(e) | e1 handlex⇒ e2

The source language has the following typing rules:

(x : τ) ∈ Γ

Γ ` x : τ

Γ ` zero : nat
Γ ` e : nat

Γ ` succ(e) : nat

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` case{e, e0, x.e1} : τ

Γ, x : τ1 ` e : τ2
Γ ` λx : τ1.e : τ1 → τ2

Γ ` e1 : τ2 → τ Γ ` e2 : τ2
Γ ` e1 e2 : τ

u :n τ ∈ Γ
Γ ` u : τ

Γ, u :n τ ` e : τ

Γ ` fixu : τ.e : τ

Γ ` e : exn
Γ ` raise(e) : τ

Γ ` e1 : τ Γ, x : exn ` e2 : τ

Γ ` e1 handlex⇒ e2 : τ
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In the context Γ, we distinguish between regular variables x : τ and by-name variables u :n τ . In a
call-by-value operational semantics, variables almost always are substituted by values. However, fixu : τ.e
substitutes a non-value expression for the variable u when it unrolls the recursion. To define the translation
from exceptions to sum types, we will need to distinguish the lambda- or case-bound variables (which stand
for values) from the fix-bound variables (which stand for general expressions).

In these rules, the type exn can be chosen to be any type (e.g. a recursive sum for all exception con-
structors in the program). For this assignment, for simplicity, we define exn to be nat, i.e. we number all of
the expcetions in the program (like TypeError is exception 1, DivideByZero is exception 2, . . . ) and don’t
account for exceptions that carry data.

The operational semantics for exceptions consists of three types of rules: instruction rules and search
rules as usual, along with propogation rules that propogate a raised exception up to the nearest enclosing
handler, or to the top of the expression.
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zero value
e value

succ(e) value λx : τ.e value

e value
e done

e value
raise(e) done

e 7→ e′

succ(e) 7→ succ(e′)
suc-search

raise(e) done

succ(raise(e)) 7→ raise(e)
suc-prop

e 7→ e′

case{e, e0, x.e1} 7→ case{e′, e0, x.e1}
case-search

raise(e) done

case{raise(e), e0, x.e1} 7→ raise(e)
case-prop

case{zero, e0, x.e1} 7→ e0
case-instr-0

e value
case{succ(e), e0, x.e1} 7→ e1[e/x]

case-instr-1

e1 7→ e′1
e1 e2 7→ e′1 e2

app-search-1
e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

app-search-2

(raise(e)) done

(raise(e)) e2 7→ raise(e)
app-prop-1

e1 done raise(e) done

e1 (raise(e)) 7→ raise(e)
app-prop-2

e2 value

(λx : τ.e) e2 7→ e[e2/x]
app-instr

fixu : τ.e 7→ e[(fixu : τ.e)/u]
fix-instr

e 7→ e′

raise(e) 7→ raise(e′)
raise-search

raise(e) done

raise(raise(e)) 7→ raise(e)
raise-prop

e1 7→ e′1
(e1 handlex⇒ e2) 7→ (e′1 handlex⇒ e2)

handle-search

raise(e) done

(raise(e) handlex⇒ e2) 7→ e2[e/x]
handle-catch

e1 value

(e1 handlex⇒ e2) 7→ e1
handle-value

Note that case-instr-1 and app-instr and handle-catch substitute values for regular vari-
ables, while fix-instr substitutes an expression for a by-name variable.

2 Target Language

The target language is call-by-value PCF/FPC (see PFPL Chapter 19 and 20) with product and sum types
(Chapter 10 and 11). You can use the concrete syntax from Homework 4 to write expressions in this lan-
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guage, and assume that the type nat with zero, succ(e), case{e, e0, x.e1.} has been defined analogously to
that homework.

The most important thing is that the target language does not have exceptions, so we will need to
translate exceptions to uses of sum types.

In stating the correctness of the translation, we will use definitional equality of target language programs.
We write Γ ` e ≡ e′ : τ to mean “e is equal to e′ modulo the operational semantics”. This relation is defined
for well-typed programs with the same type in the same context, Γ ` e : τ and Γ ` e′ : τ . Intuitively, the
definitional equality is defined by

• All of the usual step rules are definitional equality rules, e.g.

Γ, x : τ2 ` e : τ Γ ` e2 : τ Γ ` e2 ovalue

Γ ` (λx : τ.e) e2 ≡ e[e2/x] : τ

and similarly for the instruction steps for natural numbers, products, sums, recursive types, etc.

Moreover, these step rules apply in any context, including when an expression has free variables.

We write Γ ` e ovalue for an extension of the usual value predicate e value to include regular variables
(which stand for values):

x : τ ∈ Γ
Γ ` x ovalue Γ ` λx : τ.e ovalue

Γ ` e ovalue
Γ ` inleftτ (e) ovalue

Γ ` e ovalue
Γ ` inrightτ (e) ovalue

Γ ` e1 ovalue Γ ` e2 ovalue

Γ ` 〈e1, e2〉 ovalue
Γ ` e ovalue

Γ ` foldt.τ (e) ovalue

All of the e value premises on the step rules become Γ ` e ovalue premises on the definitional equality
rules. E.g. you can reduce a function application when the argument is an “open value”, i.e. an
expression constructed from the value constructors and from variables.

• Definitional equality is an equivalence relation: it is reflexive, symmetric, and transitive.

• Definitional equality is a congruence: you can replace equals with equals anywhere in a term, via
search rules like

Γ, x : τ1 ` e ≡ e′ : τ2
Γ ` λx : τ1.e ≡ λx : τ1.e

′ : τ1 → τ2

Γ ` e1 ≡ e′1 : τ2 → τ Γ ` e2 ≡ e′2 : τ2

Γ ` e1 e2 ≡ e′1 e′2 : τ

The upshot of all of this is that definitional equality lets you “step anywhere in an expression, as many
times as you want, in any direction”. If you like, you can see PFPL Section 5.4 for more details, but this
informal understanding will be enough to prove the correctness of the translation from exceptions to sum
types.

3 The Translation

In the section, you will define a language-to-language translation that compiles exceptions to sum types, as
discussed at the end of Lecture 17.
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The basic structure of this translation is that a source-language program

x1 : τ1, . . . , xn : τn, u1 :n σ1, . . . , um :n σm,` e : τ

is translated to a target language program

x1 : |τ1|, . . . , xn : |τn|, u1 :n |σ1|+ exn, . . . , um :n |σn|+ exn,` |e| : |τ |+ exn

The notation |e| refers to a function from source-language expressions to target language-expressions,
and the notation |τ | refers to a translation from source-language types to target-language types.

Intuitively, this means that a source language program of type τ becomes a target language program of
type |τ | + exn. That is, a source language program with type τ in some sense “lies” about its type — it
doesn’t always return a τ ; sometimes it raises an exception. The translation makes this “lie” explicit using a
sum type, where |e| : |τ |+ exn either returns a |τ | (tagged with inleft sum type constructor), or it returns
an exception (tagged with the inright sum type constructor). The translation of the context says that a
regular variable x has type |τi|— because a regular variable stands for a value, which is done, the expression
that is substituted for it doesn’t raise an exception. On the other hand, by-name variables u : σi are translated
to have type |σi|+ exn, because the non-value that is substituted for them might raise an exception.

The type translation |τ | is needed because a function τ1 → τ2 in the source language might sometimes
raise an exception when it is called:

|nat| = nat
|τ1 → τ2| = |τ1| → (|τ2|+ exn)

Note that since we take exn to be nat, if we write exn for nat in the target language, then we have |exn| = exn
as well.

To make the above easier to write, we define the translation on typing contexts by

|∅| = ∅
|Γ, x : τ | = |Γ|, x : |τ |
|Γ, u :n σ| = |Γ|, u :n |σ|+ exn

and then the typing specification for the translation is

Static Correctness: If Γ ` e : τ then |Γ| ` |e| : |τ |+ exn

3.1 Definition of the Translation and Static Correctness

Here are the cases of the translation of expressions that we did in class:

| zero | = inleft zero
| succ e | = case |e| { inleft x => inleft (succ x)

| inright y => inright y }
| raise e | = case |e| { inleft x => inright x

| inright y => inright y}
| e1 handle x => e2 | = case |e|

{ inleft y => inleft y
| inright x => |e2| }
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A model case of the proof of static correctness is:

• Case for succ(e). Assume we have
Γ ` e : nat

Γ ` succ(e) : nat

By the inductive hypothesis, |Γ| ` |e| : |nat| + exn, but by definition |nat| = nat. We need to show
that |Γ| ` |succ(e)| : nat + exn. By definition, |succ e| is

case |e| { inleft x => inleft (succ x) | inright y => inright y }

and for this to have type nat + exn, it suffices to show that |Γ|, x : nat ` inleft(x) : nat + exn and
|Γ|, y : exn ` inright(y) : nat + exn, which are true by the typing rules for inleft and inright.1

Task 1 (50%). Finish defining the translation:

|x| = . . .
|u| = . . .

|λx : τ.e| = . . .
|e1 e2| = . . .

|case{e, e0, x.e1}| = . . .
|fixu : τ.e| = . . .

(To define the translation, we assume that we can tell whether a variable is a regular variable x or a by-name
variable u e.g. by the variable name). For each, give the case of the proof of static correctness for the typing
rule for that term (you can either write a typing derivation or describe it as in the model case above).

3.2 Dynamic Correctness

While static correcness says that the target program has the intended type, dynamic correctness says that the
operational semantics of the source program is preserved by the translation.

Dynamic Correctness: If · ` e : τ and · ` e′ : τ and e 7→ e′ then · ` |e| ≡ |e′| : |τ |+ exn.

Here are a couple of model cases of the proof:

• For succ-search: Assume · ` succ(e) : τ and · ` succ(e′) : τ and

e 7→ e′

succ(e) 7→ succ(e′)
suc-search

By inversion on typing, τ and τ ′ are nat and · ` e : nat and · ` e′ : nat, so the inductive hypothesis
on e 7→ e′ gives that |e| ≡ |e′| : |nat|+ exn. By congruence of definitional equality,

case |e| { inleft x => inleft (succ x) | inright y => inright y }

and
1You can leave off the type annotation on inleft/inright for this problem.
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case |e’| { inleft x => inleft (succ x) | inright y => inright y }

are definitionally equal as well.

• For succ-prop: Assume · ` succ(raise(e)) : nat and · ` raise(e) : nat and

raise(e) done

succ(raise(e)) 7→ raise(e)
suc-prop

Expanding definitions, we need to show that

case (case |e| { inleft x => inright x
| inright y => inright y})

{ inleft x => inleft (succ x)
| inright y => inright y }

is definitionally equal to

(case |e| { inleft x => inright x
| inright y => inright y})

Since raise e is done by assumption, e is a value. Therefore, by Lemma 1, |e| is definition-
ally equal to inleft v for some value v:exn. Thus, both expressions are definitionally equal to
inright v by the instruction steps for case analysis, and therefore they are equal.

Task 2 (50%). Prove the cases of dynamic correctness for the remaining step rules case-search,
case-prop, case-instr-0, case-instr-1, app-search-1, app-search-2, app-prop-1,
app-prop-2, app-instr, fix-instr, raise-search, raise-prop, handle-search, handle-catch,
handle-value.

Your proof can use the following lemmas:

• Lemma 1 (Translation of a value): If · ` e : τ and e value then · ` |e| ≡ inleft(v) : |τ | + exn for
some · ` v : |τ | such that v value. That is, the translation of a value is always inleft (because a value
doesn’t raise an exception) of a value.

• Lemma 2 (Substitution for value variable): If x : τ2 ` e : τ and · ` e2 : τ2 and e2 value, then
· ` |e[e2/x]| ≡ |e|[v/x] : τ for the value v such that |e2| ≡ inleft(v) given by Lemma 1.

• Lemma 3 (Substitution for by-name variable): If u :n τ2 ` e : τ and · ` e2 : τ2 then · ` |e[e2/u]| ≡
|e|[|e2|/u] : τ

You don’t need to show the proofs of these lemmas, but you should make sure they are true for your trans-
lation.
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