
COMP 321 Homework 6, Fall 2021:
Lazy Evaluation

Thus far, we have focused on call-by-value/eager languages. Recall that call-by-value means that the
argument to a function is evaluated before substituting its value into the function body

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

e2 value

(λx : τ.e) e2 7→ e[e2/x]

Eager evaluation means that a compound data structure is a value only when its components are a value. For
example, the rules making cons(e1, e2) eager are

e1 value e2 value

cons(e1, e2) value

e1 7→ e′1
cons(e1, e2) 7→ cons(e′1, e2)

e1 value e1 7→ e′1
cons(e1, e2) 7→ cons(e1, e

′
2)

An alternative is call-by-name/lazy languages. A call-by-name evaluation order for functions means that
the whole un-evaluated expression e2 is substituted into the body of the function, replacing the above rules
with

(λx : τ.e) e2 7→ e[e2/x]

One argument for call-by-name evaluation is that, if x is never used by e, then e2 is never evaluated — in
call-by-value, it is always evaluated, whether it is used or not.

A lazy evaluation order for cons(e1, e2) means that cons is a value regardless of whether or not its
subexpressions are, replacing the above rules with

cons(e1, e2) value

One advantage of lazy data structures is that they can easily represent infinite structures, e.g. an infinite list
of all natural numbers [0, 1, 2, 3, . . .].

Some languages adopt a call-by-name/lazy evaluation order entirely, while other languages are generally
call-by-value/eager but provide support for using call-by-name/laziness in specifically marked places (to
some extent, this can even be implemented as a library).

However, most languages/libraries do not actually use call-by-name/lazy evaluation as described above,
but a variant called call-by-need. These differ when a function uses its input more than once. For example,
in naı̈ve call-by-name

(λx : nat.x+ x) e2 7→ e2 + e2

and so e2 will be evaluated twice — which could be expensive if it is a large, time-consuming program. In
call-by-need, the idea is that e2 is evaluated at most once. If x is never used, e2 is not evaluated at all. But if
x is used, then e2 is evaluated the first time x is used, but the value of e2 is reused the second time x is used.
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The same policy is used for the pieces of data structures (e.g. the e in� e and the e1 and e2 in cons(e1, e2)),
let-bound expressions, and the bodies of fixed points.

This intuition can be implemented using the same technical machinery of a memory that we have used
for mutable references in the last few lectures. The goal for this assignment is to understand that technical
machinery, and to understand call-by-need/lazy evaluation order, and to see an example where the same
syntax of a programming language can be given different operational semantics. You will first extend the
rules for call-by-need from the textbook to check your understanding, and then implement them.

1 Rules for lists and let

A full description of call-by-need evaluation is in Section 36.1 and 36.2 of PFPL. Some notes on notation:

• In class, we wrote µ | e for a memory µ and a expression e. In the book, this is annotated with the
store typing Σ, which maps locations to the type of expression that should be stored in that location
in the memory, and the triple (Σ, µ, e) is written νΣ{e || µ}. For example

ν(l1 ∼ nat, l2 ∼ list){e || l1 ↪→ (1 + 1), l2 ↪→ cons(@l1, nil)

represents the memory where l1 has type nat and l2 has type list (lists of natural numbers) and l1
contains the expression 1 + 1 and l2 contains the expression cons(@l1, nil)

• The extension of a memory µ with a new binding l ↪→ e is written µ ⊗ l ↪→ e. In class we wrote
µ, l = e.

• The use of a location l is written as an expression constructor @l. In class we wrote just l for this.

• In class, when we wrote the operational semantics for mutable references, we left the memory typing
Σ out of the step rules. While the memory typing is not strictly necessary for defining how a program
steps, outputing the new memory typing is helpful for re-type checking a program after it takes a step,
which can be helpful for debugging.

When we wrote operational semantics for mutable references in class, a memory location @l was treated
as a value of reference type. For call-by-need/lazy implementation of PCF, there are no reference types —
mutable memory is being used behind the scenes only to implement a more efficient variant of call-by-need.
Thus, a memory location is not treated as a value, but as an expression that steps. Intuitively, to evaluate @l,
you look at the binding of l in the memory. If it is bound to a value, then you (re)use that value (36.3a). If it
is bound to a non-value expression, you evaluate the expression in the memory, and return its value, leaving
the value in the memory for any subsequent use (36.3b). It is possible to write programs where the value of a
location is needed during the calculation of the value of that very location. In call-by-name, such a program
would infinite-loop. In call-by-need, we can use a special memory binding called a “black hole” to detect
such infinite loops and stop the computation. This is accomplished by binding a location to a “black hole”
while evaluating the expression for that location.

How do locations get bound to expressions in the memory? When evaluating a successor succ(e) (36.3c),
you don’t evaluate e right away, but instead bind a new memory location to it. Similarly for function calls
(36.3h) and fixed points (36.3i).

Task 1 (20%). Extend the rules in Section 36.1 with call-by-need/lazy operational semantics rules (value
and step rules) for
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1.
Γ `Σ nil : list

2.
Γ `Σ e1 : nat Γ `Σ e2 : list

Γ `Σ cons(e1, e2) : list

3.
Γ `Σ e : list Γ `Σ e0 : τ Γ, x : nat, xs : list `Σ e1 : τ

Γ `Σ listcase(e, e0, x.xs.e1) : τ

4.
Γ `Σ e1 : τ1 Γ, x : τ1 `Σ e2 : τ2

Γ `Σ let(τ1, e1, x.e2) : τ2

Task 2 (20%). Prove the cases of type preservation (Theorem 36.1) for the step rules you defined in the
previous task. Specifically, the theorem you need to prove by induction is the generalization at the start of
the Proof:

If · `Σ e : τ and `Σ µ : Σ and νΣ{e || µ} 7→ νΣ′{e′ || µ′} then Σ′ is an extension of Σ and
`Σ′ µ′ : Σ′ and · `Σ′ e′ : τ ′.

Recall from lecture that Σ′ being an extension of Σ (Σ′ ⊇ Σ) means that every location in Σ is in Σ′

with the same type, but Σ′ can contain additional locations with any type. The judgement `Σ µ : Σ means
that each location l in the memory µ contains an expression of the type τ associated with l in Σ — and
this expression may use all of the locations in the memory, to allow for circular references (see rule 36.5b).
Additionally, the black holes are ignored/deemed to have any type.

2 Implementation

Next, you will implement the operational semantics (including the rules from the book and your new rules).

2.1 Syntax

The syntax is mostly the same as previous assignments. To keep things simple, natural numbers and lists
have one-step case-analysis constructs NatCase and ListCase (not general pattern matching), which are
written in concrete syntax as

natcase e {z => e0 | s x => e1 }
listcase e {nil => e0 | cons <x,xs> => e1 }

Additionally, unlike in previous assignments, let bindings

let x : t be e1 in e2

must be annotated with the type t of e1 (you should see why when you write your step rules for let).
Some notes on the support code in Syntax:
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• location is implemented by an int, and there is a function freshLoc : unit -> location
for creating a new location.

• Memories are represented by

datatype memory_entry = Defined of exp | BlackHole
type memory = (location * typ * memory_entry) list

A memory entry is either Defined e (written as just e in PFPL) or the special entry BlackHole
(•).
In the step rules, we always work with a memory typing Σ = l1 ∼ τ1 . . . ln ∼ τn and a memory
µ = l1 ↪→ e1 . . . ln ↪→ en where each location li in Σ occurs once in µ and vice versa. To simplify
the code, we zip these together into one list, so memory is a list of triples (li, τi, ei), so the memory

(l1, τ1, e1), . . . , (ln, τn, en)

represents both the memory typing
l1 ∼ τ1, . . . , ln ∼ τn

and the memory
l1 ↪→ e1, . . . , ln ↪→ en

2.2 Type checker

The type checker is provided for you in check.sml. It is essentially the standard type checker for numbers
and functions and lists, except the checkOpen function also takes a memory typing as input and uses that
to determine the types of locations. check_memory implements rule 36.5b.

2.3 Operational semantics

For the progress function for this language, we use the following result type:

datatype result =
Done

| Stepped of Syntax.memory * Syntax.exp
| Loops

The specification for progress is then

Given |-_Sigma mu : Sigma and |-_Sigma e : tau, return
Done iff e is a value
Loops iff {{mu || e}} loops by accessing a black hole
Stepped (mu’,e’) iff {e || mu} |-> {e’ || mu’}

The “loops” judgement is defined in rules 36.6a-d, and you will need analogous rules for let and
listcase. This judgement detects when a program accesses a location while computing the value that is
supposed to be stored in that location. One example of a looping program is fix x:nat.x.

Task 1 (53%). Implement progress in step.sml.
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2.4 Examples and Testing

The module Top includes the usual testing functions from previous homeworks.
Note that Top.file_eval and Top.loop_eval do not print anything for black holes — the evalu-

ation will simply get stuck. On the other hand Top.file_step and Top.loop_stepwill print whether
the program reached Done (by printing VALUE) or Loops (by printing BLACKHOLE).

In call-by-name/lazy evaluation, successor and cons are values regardless of what is inside of them.
This makes the results of computation hard to interpret — for example, if you add two numbers, then
the value will be either 0 or successor, but not tell you what it is successor of. The predecessor is only
computed when some future computation calls for it. To make it easier to test, there are additional test func-
tions Top.loop_eval_deep n and Top.file_eval_deep filename n that evaluate a program
“deeply”, i.e. they evaluate inside successor and cons as well. You can think of this as a top-level “to string”
function that forces all of a value to be evaluated. The number n controls how many levels deep to evaluate
before stopping, which is useful for printing parts of infinite structures.

Infinite lists can be defined using fixed points. For example, an infinite list of ones (see examples.pcf):

fix ones : list. cons < 1 , ones >

Task 1 (2%). Describe in words what this infinite list contains:

let
addone : (list -> list) be

fix addone : (list -> list).
lam xs : list.
listcase xs {

nil => nil
| cons <y,ys> => cons <s y , addone @ ys > }

in
fix nums : list. cons<0 , addone @ nums >

end;

Task 2 (5%). The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . . are defined by

fib(0) = 1
fib(1) = 1
fib(n) = fib(n− 1) + fib(n− 2)

Define an infinite list of all Fibonacci numbers.
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