
COMP 321 MIDTERM Fall 2021

1 Logistics

• Collaboration policy: you are not allowed to discuss the problems in this handout with anyone
besides the professor. Once you begin working on the exam, you are not allowed to refer to
any sources besides this semester’s course materials (textbook and lecture materials). However,
there will be the usual TA sessions during the exam, and you are allowed to ask the TAs about any
past homework problem or lecture material, including the lecture videos on product and sum types.

• To hand in, please upload midterm.pdf and check.sml and step.sml to the midterm/
handin folder in your Google Drive handin folder.

2 Proofs and refutations of type safety

In the last homework, you looked at one way to add lists to a programming language. In this problem, we
investigate two alternative ways of adding lists as a primitive type. These alternatives are not necessarily
good ideas; it is your job to tell us whether they are or are not. In particular, we ask you to prove or refute
progress and preservation for them.

For concreteness, we start from a language with numbers and strings and function types with the typing
rules and operational semantics we have discussed for the following programs:

τ ::= number | string | τ1 → τ2

e ::= x | num[k] | plus(e1, e2) | str[s] | cat(e1, e2) | λx : τ.e | e1 e2

In the following questions, you do not need to consider the cases of the proofs for the constructs in this
fragment.

2.1 Head and Tail

Consider the following extension of the above language with lists of strings:

τ ::= . . . | list
e ::= . . . | nil | cons(e1, e2) | head(e) | tail(e)

The idea is that head(e) gets the first element of a list, while tail(e) gets the list with the first element
removed. Here are some attempted typing and operational semantics rules:

1

Γ ` e : τ

Γ ` nil : list
of-nil

Γ ` e1 : string Γ ` e2 : list

Γ ` cons(e1, e2) : list
of-cons

Γ ` e : list
Γ ` head(e) : string

of-head
Γ ` e : list

Γ ` tail(e) : list
of-tail

e done

nil done
done-empty

e1 done e2 done

cons(e1, e2) done
done-cons

e1 7→ e2

e1 7→ e′1
cons(e1, e2) 7→ cons(e′1, e2)

step-cons-search
e1 done e2 7→ e′2

cons(e1, e2) 7→ cons(e1, e
′
2)

step-cons-search-2

e 7→ e′

head(e) 7→ head(e′)
step-head-search

cons(e1, e2) done

head(cons(e1, e2)) 7→ e1
step-head-instr

e 7→ e′

tail(e) 7→ tail(e′)
step-tail-search

cons(e1, e2) done

tail(cons(e1, e2)) 7→ e2
step-tail-instr

For example, under these semantics,

· ` head(tail(cons(str[vanilla], cons(str[chocolate], cons(str[swirl], nil))))) : string

and

head(tail(cons(str[vanilla], cons(str[chocolate], cons(str[swirl], nil)))))

7→ head(cons(str[chocolate], cons(str[swirl], nil)))

7→ str[chocolate]

One of preservation/progress is true and the other is false. For the one that is true, prove it. For the
one that is false, refute it by giving a concrete counterexample. (To refute preservation, give a closed, well-
typed expression that steps to something of a different type. To refute progress, give a closed, well-typed
expression that is not done and does not take a step.)

Task 1 (25%).

• Prove or refute preservation:

If e 7→ e′ and · ` e : τ then · ` e′ : τ .

• Prove or refute progress:

If · ` e : τ then e done or there exists an e′ such that e 7→ e′.

• Briefly describe a way to make both progress and preservation hold for a language with these expres-
sions for lists (nil, cons(e1, e2), head(e), tail(e)) by changing the type system or operational seman-
tics.

2

2.2 Heterogeneous Lists

Now, we instead extend the language with a type of heterogeneous lists, which can contain either numbers
or strings. That is, a single list can contain elements of more than one type. There are two kinds of cons
expressions, one that adds a number to a list, and one that adds a string. There are also two case analysis
operations, one where the head of the list is assumed to be a number, and one where it is assumed to be a
string. (For this problem, we focus on case analysis for lists only, leaving out recursion.)

τ ::= . . . | list
e ::= . . . | nil | consnumber(e1, e2) | consstring(e1, e2) | listcasenumber(e){e1, x.y.e2} | listcasestring(e){e1, x.y.e2}

Γ ` e : τ

Γ ` nil : list
of-nil

Γ ` e1 : number Γ ` e2 : list

Γ ` consnumber(e1, e2) : list
of-consn

Γ ` e1 : string Γ ` e2 : list

Γ ` consstring(e1, e2) : list
of-conss

Γ ` e : list Γ ` e1 : τ Γ, x:number, y:list ` e2 : τ

Γ ` listcasenumber(e){e1, x.y.e2} : τ
of-listcasen

Γ ` e : list Γ ` e1 : τ Γ, x:string, y:list ` e2 : τ

Γ ` listcasestring(e){e1, x.y.e2} : τ
of-listcases

e done

nil done
done-empty

e1 done e2 done

consnumber(e1, e2) done
done-consn

e1 done e2 done

consstring(e1, e2) done
done-conss

e1 7→ e2

e1 7→ e′1
consnumber(e1, e2) 7→ consnumber(e

′
1, e2)

step-consn-search

e1 done e2 7→ e′2
consnumber(e1, e2) 7→ consnumber(e1, e

′
2)

step-consn-search-2

e1 7→ e′1
consstring(e1, e2) 7→ consstring(e′1, e2)

step-conss-search

e1 done e2 7→ e′2
consstring(e1, e2) 7→ consstring(e1, e

′
2)

step-conss-search-2

3

e 7→ e′

listcasenumber(e){e1, x.y.e2} 7→ listcasenumber(e
′){e1, x.y.e2}

step-listcasen-search

listcasenumber(nil){e1, x.y.e2} 7→ e1
step-listcasen-instr-1

consnumber(eh, et) done

listcasenumber(consnumber(eh, et)){e1, x.y.e2} 7→ e2[eh/x][et/y]
step-listcasen-instr-2

consstring(eh, et) done

listcasenumber(consstring(eh, et)){e1, x.y.e2} 7→ e2[eh/x][et/y]
step-listcasen-instr-3

e 7→ e′

listcasestring(e){e1, x.y.e2} 7→ listcasestring(e′){e1, x.y.e2}
step-listcases-search

listcasestring(nil){e1, x.y.e2} 7→ e1
step-listcases-instr-1

consnumber(eh, et) done

listcasestring(consnumber(eh, et)){e1, x.y.e2} 7→ e2[eh/x][et/y]
step-listcases-instr-2

consstring(eh, et) done

listcasestring(consstring(eh, et)){e1, x.y.e2} 7→ e2[eh/x][et/y]
step-listcases-instr-3

For example, under these semantics,

· ` listcasenumber(cons(plus(num[3], num[4]), cons(str[samurai], nil))){9, x.y.11} : number

and

listcasenumber(cons(plus(num[3], num[4]), cons(str[samurai], nil))){9, x.y.11}
7→∗ listcasenumber(cons(num[7], cons(str[samurai], nil))){9, x.y.11}
7→ 11

Note that the operational semantics are exactly the same for consnumber(e1, e2) and consstring(e1, e2),
and for listcasenumber(e){e1, x.y.e2} and listcasestring(e){e1, x.y.e2}, but the two have different typing
rules. In the proofs, you can write just cons(e1, e2) and listcase(e){e1, x.y.e2} and leave off the number/stringannotation
when the same analogous proof applies to both.

One of preservation/progress is true and the other is false. For the one that is true, prove it. For the
one that is false, refute it by giving a concrete counterexample. (To refute preservation, give a closed, well-
typed expression that steps to something of a different type. To refute progress, give a closed, well-typed
expression that is not done and does not take a step.)

Task 1 (25%).

4

• Prove or refute preservation:

If e 7→ e′ and · ` e : τ then · ` e′ : τ .

You can assume that the substitution property holds: For all Γ,Γ′, e, e′, x, τ, τ ′ , if Γ, x : τ,Γ′ ` e′ : τ ′
and Γ ` e : τ then Γ,Γ′ ` e′[e/x] : τ ′.

• Prove or refute progress:

If · ` e : τ then e done or there exists an e′ such that e 7→ e′.

• Fix the one that is false by keeping both consnumber(e1, e2) and consstring(e1, e2) and their typing
rules and operational semantics the same, but changing listcase. Show any typing and operational
semantics rules that change. You should ensure that both progress and preservation hold for your
definitions, but you do not need to hand in the proofs.

3 Implementation

In this problem, you will implement the typing rules and operational semantics for unary and binary product
types and binary sum types, as described in Chapters 10 and 11 of PFPL. Collaboration policy note for this
problem: you are allowed to discuss product and sum types (the material in the textbook; the lecture
videos) with each other and with the professor and TAs. However, you are not allowed to discuss or
share any aspect of the implementation of these rules.

The correspondence between the abstract syntax in PFPL and the SML datatype is
τ1 × τ2 Product(t1,t2)
τ1 + τ2 Sum(t1,t2)
〈〉 Triv

〈e1, e2〉 Pair(e1,e2)
e · l ProjLeft e
e · r ProjRight e
l · e InLeft(t,e)
r · e InRight(t,e)

case(e){l · x ↪→ e1 | r · y ↪→ e2} Case(e,(x,e1),(y,e2)

Task 1 (25%). Implement the typing rules and operational semantics for nullary and binary products on page
84 (Section 10.1) in the function progress in step.sml and the function checkOpen in check.sml.
You should implement the eager version of the operational semantics rules (include the bracketed rules and
premises).

Task 2 (25%). Implement the typing rules and operational semantics for binary sums on page 90 (Section
11.1) in the function progress in step.sml and the function checkOpen in check.sml. You should
implement the eager version of the operational semantics rules (include the bracketed rules and premises).
To make type checking easier, InLeft(t,e) and InRight(t,e) are labeled with the other part of the
sum type besides the type of e:

Γ ` e : τ1
Γ ` inleft(τ2, e) : τ1 + τ2

Γ ` e : τ2
Γ ` inright(τ1, e) : τ1 + τ2

5

Some examples for testing are in examples.t. The concrete syntax understood by the parser is
(t1 * t2) Product(t1,t2)
(t1 + t2) Sum(t1,t2)

<> Triv
< e1 , e2 > Pair(e1,e2)
projleft e ProjLeft e
projright e ProjRight e
inleft[t] e InLeft(t,e)
inright[t] e InRight(t,e)

case e {inleft x => e1 | inright y => e2} Case(e,(x,e1),(y,e2))

6

