Verification and Parallelism in Intro CS

Dan Licata Wesleyan University

Starting in 2011, Carnegie Mellon revised its intro CS curriculum

- Computational thinking [Wing]
- Specification and verification
- Parallelism

CMU Intro Courses

Fundamentals of Computing

Imperative Computation

Data Structures and Algorithms Software Construction

CMU Intro Courses

Fundamentals of Computing

Course Design

- Imperative computation (Fa'11): Frank Pfenning, Tom Cortina, William Lovas
- Functional computation (Sp'11): me, Bob Harper
- Data structures and algorithms (Fa'12): Guy Blelloch, Margaret Reid-Miller, Kanat Tangwongsan

taught and refined by many people since!

Status

- First group of students just graduated
- Courses are generally well-liked
- Anecdotally, students seemed stronger than before in some upper-level classes
- Preliminary studies by Carol Frieze indicate they preserve the women-CS fit at CMU

My role

- Designed Functional Computation
- Taught Spring'11, Fall'11, Spring'12
- Now at Wesleyan
- Taught Imperative Computation this spring; teaching Imperative next fall and Functional next spring

CMU

- Premier tech school
- Students admitted to CS
- ~600 students
 per year in intro
- ~150 CS majors
 per year

Wesleyan

- Liberal arts school, strong in sciences
- •Not
- ~100 students per year in intro
- ~30 CS majors per year

CMU

- Imperative has a "basic programming" prereq
- Imperative has a math co-req
- Functional has a math prereq

Wesleyan

- Many students
 have never
 programmed
 before
- No math pre/co-reqs, though many students have it

Hypothesis

CMU courses can work elsewhere, with some adaptation to context

Wesleyan this spring: 2/3rds of CMU Imperative

- less programming background
- shorter semester
- fewer student hours per week

Course Design

Imperative Computation Functional Computation

Data Structures and Algorithms

Trade-offs

- Breadth vs depth
- Outward vs inward
- Motivation vs skills
- Short- vs long-term
- Systems vs theory
- Jump in vs training wheels

Trade-offs

• Breadth vs depth Outward vs inward Motivation vs skills Short- vs long-term • Systems vs theory Jump in vs training wheels

Objectives

computational thinking

imperative and functional programming

algorithm design and analysis

specification and verification

Computational Thinking

what vs how

correctness and safety

efficiency

parallelism

randomness

self-reference modularity functions as data ephemerality vs persistence

Objectives

computational thinking

imperative and functional programming

algorithm design and analysis

specification and verification

C0: teaching language based on C, designed by Frank Pfenning and Rob Arnold

functions, variables, loops, arrays, pointers&structs

rudimentary interfaces

type safe, bounds checked, garbage collected

Then transition to C

memory management void* and casting function pointers

Arrays

Search

Top 10 most frequent words in texts/twitter_200k.txt i 83670 to 37445 the 36925 lol 35615 a 30300 u 28033 my 25093 you 24574 me 21326

it 21144

Pointers and structs

Data structures

COMP 211 Assignment 8

Page 11 of 13

2.7 Summary of data structures

There are a lot of different data structures being used in this homework! Here is a summary to help you keep them straight:

- Building a Huffman tree converts a dictionary (represented as a pair of arrays) to a Huffman tree, using a priority queue (whose elements are Huffman trees).
- To encode, we convert a Huffman tree to a hashtable (mapping characters to bitstrings) using a stack (of pairs of Huffman trees and bitstrings).
- To decode, we just use the Huffman tree.
- The hashtable elements are a struct char_with_string that pairs a character with a bitstring.
- The priority queue elements are Huffman tree trees.
- The stack elements are a struct hufftree_with_path that pairs a Huffman tree with a bitstring.
- Decode returns a decode_result, which is either NULL or a pair of a character and a bitstring.

Standard ML

numbers, pairs, lists, trees, datatypes

functions as arguments and results

signatures, structures, functors

exceptions, mutation, IO

Why not

- Ocaml: no parallel implementation (Manticore for SML)
- Haskell: laziness complicates cost analysis
- F#: want the ML module system

Maxie, please type your move: 0 Maxie decides to make the move 0 in 14 seconds. 0123456 IXI | 10101 | 1 Minnie decides to make the move 0 in 0 seconds. 0123456 101 IXI | |0|0|

Objectives

computational thinking

imperative and functional programming

algorithm design and analysis

specification and verification

unbounded arrays ephemeral data structures priority queues arrays searching hash tables DFS/BFS in-place sorting balanced BSTs linked lists stacks tries spanning trees queues union find

unbounded arrays ephemeral data structures priority queues arrays searching hash tables DFS/BFS in-place sorting linked lists stacks queues

Analysis

big-O

worst case

amortized

expected case

persistent data structures lists trees sorting regular expression matching n-body simulation balanced BSTs game tree search

Analysis

recurrence relations closed forms log

Data structures and algorithms

divide and conquer sequences sets and tables randomization dynamic programming

BFS/DFS shortest paths treaps leftist heaps k-grams
Functional DS&A

lists trees sorting n-body simulation game tree search

divide and conquer sequences sets and tables randomization **BFS/DFS** shortest paths treaps dynamic programming leftist heaps

Functional DS&A

lists trees sorting n-body simulation game tree search

divide and conquer sequences sets and tables randomization **BFS/DFS** shortest paths treaps dynamic programming leftist heaps

always have parallelism in mind!

Imperative

mutable data structures arrays searching in-place sorting linked lists stacks queues unbounded arrays priority queues hash tables DFS/BFS tries spanning trees union find

Functional/ DS&A

lists trees sorting n-body simulation game tree search divide and conquer sequences sets and tables randomization **BFS/DFS** shortest paths treaps dynamic programming leftist heaps

Imperative

mutable data structures arrays searching in-place sorting linked lists stacks queues unbounded arrays priority queues hash tables DFS/BFS tries spanning trees union find

Functional/ DS&A

lists trees sorting n-body simulation game tree search divide and conquer sequences sets and tables randomization **BFS/DFS** shortest paths treaps dynamic programming leftist heaps

always have verification in mind!

Objectives

computational thinking

imperative and functional programming

parallel algorithm design and analysis

specification and verification

Specification and Verification

Specification and Verification

Imperative: pre/post-conditions and loop invariants, expressed using boolean-valued functions

Functional: mathematical statements about calculational behavior of programs

Slogans

proof-oriented programming

deliberate programming

proof-directed debugging

Imperative

Specifications

safety

behavioral

data structure invariants

Safety

```
// try to prove that all array accesses are in bounds
void process_heartbeat(struct ssl* request)
Ł
  int payload = request->data[0];
  int[] buffer = alloc_array(int, 1 + payload);
  buffer[0] = payload;
  for (int i = 0; i < payload; i = i + 1)
  Ł
    buffer[i+1] = request->data[i+1];
  }
  send(buffer,1+payload);
```

}

Behavior

```
void sort(int[] A, int lower, int upper)
//@ requires 0 <= lower && lower <= upper && upper <= \length(A);</pre>
//@ ensures is_sorted(A,lower,upper);
Ł
  for (int i = lower; i < upper; i = i + 1)
    //@loop_invariant lower <= i && i <= upper;</pre>
    //@loop_invariant is_sorted(A,lower,i);
    //@loop_invariant le_segs(A,lower,i,i,upper);
    Ł
      int smallest_index = get_min(A,i,upper);
      swap(A,i,smallest_index);
    }
```

Behavior

```
//return true iff A[lower,upper) is sorted
bool is_sorted(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
{
  for (int i = lower; i + 1 < upper; i = i + 1)
    //@loop_invariant 0 <= i;
    {
        if (A[i] > A[i+1]) { return false; }
        }
      return true;
}
```

Proofs

Loop invariants hold initially

Loop invariants preserved by one iteration

Loop invariants imply the postcondition

```
void sort(int[] A, int lower, int upper)
//@ requires 0 <= lower && lower <= upper && upper <= \length(A);</pre>
//@ ensures is_sorted(A,lower,upper);
Ł
  for (int i = lower; i < upper; i = i + 1)
    //@loop_invariant lower <= i && i <= upper;</pre>
    //@loop_invariant is_sorted(A,lower,i);
    //@loop_invariant le_segs(A,lower,i,i,upper);
    Ł
      int smallest_index = get_min(A,i,upper);
      swap(A,i,smallest_index);
    }
```


A[lower,i) sortedA[lower,i+1) sortedA[lower,i) <= A[i,upper)</td>A[lower,i+1) <=</td>A[s] <= A[i+1,upper)</td>A[i+1,upper)

Binary Search

```
int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \left(A\right);
//@requires is_sorted(A, 0, n);
/*@ensures (\result == -1 && !is_in(x, A, 0, n))
        || (0 <= \result && \result < n && A[\result] == x); @*/</pre>
ł
  int lower = 0;
  int upper = n;
  // look in A[lower,upper)
 while (lower < upper)</pre>
    //@ loop_invariant 0 <= lower && lower <= upper && upper <= n;</pre>
    //@ loop_invariant lower == 0 || (x > A[lower - 1]);
    //@ loop_invariant upper == n || x < A[upper];</pre>
    Ł
      int mid = lower + (upper - lower) / 2;
      //@ assert lower <= mid && mid < upper;</pre>
      if (A[mid] == x) { return mid; }
      else if (A[mid] > x) {
        upper = mid;
      }
      else {
       //@ assert A[mid] < x;
        lower = mid+1;
      }
    }
  // @ assert lower == upper;
  return -1;
}
```

Binary Search

```
int search(int x, int[] A, int n)
//@requires 0 <= n && n <= \left(A\right);
//@requires is_sorted(A, 0, n);
/*@ensures (\result == -1 && !is_in(x, A, 0, n))
        11 (0 <= \result && \result < n && A[\result] == x); @*/</pre>
ł
 int lower = 0:
 int upper = n;
 // look in A[lower,upper)
 while (lower < upper)</pre>
   //@ loop_invariant 0 <= lower && lower <= upper && upper <= n;</pre>
   //@ loop_invariant lower == 0 || (x > A[lower - 1]);
   //@ loop_invariant upper == n || x < A[upper];
    Ł
     int mid = lower + (upper - lower) / 2;
     //@ assert lower <= mid && mid < upper;</pre>
     if (A[mid] == x) { return mid; }
     else if (A[mid] > x) {
       upper = mid;
     }
                                                  Assignment: binary
     else {
       //@ assert A[mid] < x;
                                                      search for first
        lower = mid+1;
     }
    }
                                                         occurrence
 // @ assert lower == upper;
  return -1;
}
```

Data structure invs

```
struct heap_header {
 int limit; /* limit = capacity+1 */
 elem[] data; /* \length(data) == limit */
};
typedef struct heap_header* heap;
/* Just checks the basic invariants described above, none
* of the ordering invariants. */
bool is_safe_heap(struct heap_header* H) {
 if (H == NULL) return false;
 if (!(1 <= H->next && H->next <= H->limit)) return false;
 //@assert \length(H->data) == H->limit;
 return true;
}
```

Data structure invs

```
bool is_heap(struct heap_header* H)
{
    if (!is_safe_heap(H)) return false;
    for (int i = 2; i < H->next; i = i + 1)
      //@loop_invariant 2 <= i;
      {
        if (!(priority(H,i) >= priority(H,parent(i)))) return false;
      }
    }
}
```

return true;

Representation invs

/*** Client interface ***/

// typedef _____ pq_elem;

int pq_elem_priority(pq_elem e);

/*** Library interface ***/

// typedef _____ pq;
typedef struct heap_header* pq;

bool pq_empty(pq P);

```
pq pq_new(int capacity)
/*@ensures pq_empty(\result); @*/;
```

void pq_insert(pq P, pq_elem e)

```
pq_elem pq_delmin(pq P)
/*@requires !pq_empty(P); @*/;
```

Preservation

```
void pq_insert(heap H, elem e)
//@requires is_heap(H);
//@ensures is_heap(H);
£
 H->data[H->next] = e;
  int except = H->next;
  H->next = H->next + 1;
 // not necessarily is_heap(H)
  //@assert is_heap_except_up(H,except);
  // sift up
 while (except != 1 &&
         priority(H,except) < priority(H,parent(except)))</pre>
    //@ loop_invariant is_heap_except_up(H,except);
    Ł
      swap(H->data,except,parent(except));
      except = parent(except);
    }
  // @assert is_heap(H);
```

Data structure invs

```
bool is_heap_except_up(heap H, int except)
// ensures is_heap_except_up(H,1) == is_heap(H)
{
  if (!is_safe_heap(H)) {return false;}
  for (int n = 2; n < H->next; n = n + 1)
    //@ loop_invariant (2 <= n);
    {
      if (n != except) {
        if (!(priority(H,n) >= priority(H,parent(n)))) {
          return false;
        }
      }
      if ((n == left(except) || n == right(except))
          && exists(parent(except),H->next)) {
        if (!(priority(H,n) >= priority(H,parent(except)))) {
          return false;
        }
      }
    }
  return true;
}
```

Heaps

(f) Draw a picture of what happens when the swap on line /*2*/ is performed. Explain why the loop invariant is preserved in this case.

Solution:

Data structure invs

Task 1 (6 pts) A valid text buffer satisfies all the invariants described above: it is a valid doubly-linked list containing valid size-16 gap buffers, it is aligned, and it consists of either one empty gap buffer or one or more non-empty gap buffers. Implement the function

bool is_tbuf(tbuf B)

that formalizes the text buffer data structure invariants.

Contracts

'w': START <> abc12345[] <> _678#w[]WXYZdefgh_ <> []ABCDEFGH <> END
'x': START <> abc12345[] <> _678#wx[.]WXYZdefgh_ <> []ABCDEFGH <> END
'y': START <> abc12345[] <> _678#wxy[]WXYZdefgh_ <> []ABCDEFGH <> END
'z': START <> abc12345[] <> _678#wxyz[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
<pre>'#': START <> abc12345[] <> _678#wxyz#[]W_ <> []XYZdefgh <> []ABCDEFGH <> END</pre>
del: START <> abc12345[] <> _678#wxyz[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _678#wxy[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _678#wx[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _678#w[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _678#[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _678[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _67[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _6[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> abc12345[] <> _[]W_ <> []XYZdefgh <> []ABCDEFGH <> END
del: START <> _abc1234[]_ <> []W <> []XYZdefgh <> []ABCDEFGH <> END
=> : START <> abc1234[] <> _W[]_ <> []XYZdefgh <> []ABCDEFGH <> END
del: tbuf.c0:197.4-197.23: @ensures annotation failed

void tbuf_delete(tbuf B)
//@requires is_tbuf(B);
//@ensures is_tbuf(B);

Functional

Specifications

Beyond requires/ensures

Specs relating multiple functions

Propositions, not booleans

Computing by calculation

(1 + 2) * (3 + 4)
|-> 3 * (3 + 4)
|-> 3 * 7
|-> 21

(because 1 + 2 | -> 3) (because 3 + 4 | -> 7)

Contextual equivalence

(fn x => e) e' ==
$$[e'/x]e$$
 if e' valuable

Task 2.1 (5%). Write the function

zip : int list * string list -> (int * string) list

Task 2.2 (5%). Write the function

unzip : (int * string) list -> int list * string list

Task 2.3 (10%). Prove Theorem 1.

Theorem 1. For all 1 : (int * string) list, $zip(unzip l) \cong l$.

Task 2.4 (4%). Prove or disprove Theorem 2.

Theorem 2. For all 11 : int list and 12 : string list,

 $unzip(zip (l1, l2)) \cong (l1, l2)$

 $\begin{array}{lll} s \in L(0) & \text{iff} & \bot \\ s \in L(1) & \text{iff} & s = [] \\ s \in L(c) & \text{iff} & s = [c] \\ s \in L(r_1 + r_2) & \text{iff} & s \in L(r_1) \lor s \in L(r_2) \\ s \in L(r_1 r_2) & \text{iff} & \exists s_1, s_2.(s = s_1 s_2) \land s_1 \in L(r_1) \land s_2 \in L(r_2) \end{array}$

 $\begin{array}{ll} s \in L(0) & \text{iff} & \bot \\ s \in L(1) & \text{iff} & s = [] \\ s \in L(c) & \text{iff} & s = [c] \\ s \in L(r_1 + r_2) & \text{iff} & s \in L(r_1) \lor s \in L(r_2) \\ s \in L(r_1 r_2) & \text{iff} & \exists s_1, s_2. (s = s_1 s_2) \land s_1 \in L(r_1) \land s_2 \in L(r_2) \end{array}$

want to reason logically about existential, not about try-all-splits implementation

$$s \in L(r^{*}) \quad \text{iff} \quad s \in L^{*}(r) \\ \frac{1}{[] \in L^{*}(r)} \quad \frac{s = s_{1}s_{2}}{s_{1} \in L(r)} \quad s_{2} \in L^{*}(r) \\ s \in L^{*}(r) \quad s \in L^{*}(r) \end{cases}$$

inner inductive definition of L*

match : regexp -> char list -> (char list -> bool) -> bool

Soundness For all cs, k, if match $r cs k \cong true$ then there exist p, s such that $p@s \cong cs$ and $p \in L(r)$ and $k s \cong true$.

Completeness For all cs, k,

if (there exist p, s such that $p@s \cong cs$ and $p \in L(r)$ and $k s \cong true$) then match $r cs k \cong true$.
Regexp

```
fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =
    case r of
        Zero => false
      | 0ne => k cs
      1 Char c => (case cs of
                         [] => false
                       | c' :: cs' \Rightarrow chareq (c,c') and also k cs')
      | Plus (r1,r2) => match r1 cs k orelse match r2 cs k
      | Times (r1,r2) \Rightarrow match r1 cs (fn cs' \Rightarrow match r2 cs' k)
      | Star r =>
             let fun matchstar cs' = k cs' orelse match r cs' matchstar
             in
                 matchstar cs
             end
```

Regexp

```
fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =
    case r of
        Zero => false
      | 0ne => k cs
      1 Char c => (case cs of
                         [] => false
                       | c' :: cs' \Rightarrow chareq (c,c') and also k cs')
      | Plus (r1, r2) = match r1 cs k orelse match r2 cs k
      | Times (r1,r2) \Rightarrow match r1 cs (fn cs' \Rightarrow match r2 cs' k)
      | Star r =>
             let fun matchstar cs' = k cs' orelse match r cs' matchstar
             in
                 matchstar cs
             end
```

Regexp

```
fun match (r : regexp) (cs : char list) (k : char list -> bool) : bool =
    case r of
        Zero => false
      | 0ne => k cs
      1 Char c => (case cs of
                        [] => false
                      | c' :: cs' \Rightarrow chareq (c,c') and also k cs')
      | Plus (r1,r2) => match r1 cs k orelse match r2 cs k
      | Times (r1,r2) \Rightarrow match r1 cs (fn cs' \Rightarrow match r2 cs' k)
      | Star r =>
            let fun matchstar cs' = k cs' orelse match r cs' matchstar
            in
                 matchstar cs
                                                     termination bug
            end
```

Proof-directed debugging

$s \in L(r_1 \cap r_2)$ iff $s \in L(r_1) \land s \in L(r_2)$

Modularity

```
signature ORDERED =
sig
   type t
    val compare : t * t -> order
end
signature DICT =
sig
 structure Key : ORDERED
 type 'v dict
 val empty : 'v dict
 val insert : 'v dict -> (Key.t * 'v) -> 'v dict
 val lookup : 'v dict -> Key.t -> 'v option
end
```

Representation invs

A RBT satisfies (red) no red node has a red child (black) all paths from the root to a leaf have the same number of black nodes

(* If d is a RBT then insert d (k,v) is a RBT *) fun insert d (k, v) = ...

Representation invs

```
signature QUEUE=
sig
  type queue
  val emp : queue
  val ins : int * queue -> queue
  val rem : queue -> (int * queue) option
end
```

 $\mathcal{R}(\texttt{l:int list}, (\texttt{f,b}):\texttt{int list} * \texttt{int list}) \quad \text{iff} \quad l \cong f@(\texttt{rev} b)$

and \mathcal{R} respects equivalence in that if $l \cong l', (f, b) \cong (f', b')$, and $\mathcal{R}(1, (f, b))$ then $\mathcal{R}(1', (f', b'))$. Showing that this relation is respected by both implementations for all the values in QUEUE amounts to proving the following theorem:

Theorem 1.

(i.) The empty queues are related:

 $\mathcal{R}(LQ.emp, LLQ.emp)$

(ii.) Insertion preserves relatedness:

For all x: int, l: int list, f: int list, b: int list

If $\mathcal{R}(l, (f, b))$, then $\mathcal{R}(LQ.ins(x, l), LLQ.ins(x, (f, b)))$

(iii.) On related queues, removal gives equal integers and related queues:
 For all l:int list, f:int list, b:int list, if R(l, (f,b)) then one of the following is true:

- (a) LQ.rem $l \cong$ NONE and LLQ.rem (f,b) \cong NONE
- (b) There exist x: int, y: int, l': int list, f': int list, b': int list, such that

 LQ.rem l ≅ SOME(x, l')
 LLQ.rem (f,b) ≅ SOME(y, (f', b'))

 iii. x ≅ y
 iv. R(l', (f', b'))

Verification

safety

behavioral specifications

representation invariants + modularity

booleans and propositions

contracts

Slogans

proof-oriented programming

deliberate programming

proof-directed debugging

Parallelism

Parallelism

recognize the dependencies

deterministic parallelism

language-based cost model

asymptotic analysis

Parallelism != Concurrency

parallelism: multiple processors/cores. property of the machine.

concurrency: interleaving of threads. property of the application.

Parallelism != Concurrency

	sequential	concurrent
serial	traditional algorithms	traditional OS
parallel	deterministic parallelism	general parallelism

Parallel Calculation

$$(1 + 2) * (3 + 4)$$

 $|-> 3 * (3 + 4)$ (because $1 + 2 |-> 3$)
 $|-> 3 * 7$ (because $3 + 4 |-> 7$)
 $|-> 21$

Parallel Calculation

(1 + 2) * (3 + 4) |=> 3 * 7 |=> 21 (because 1 + 2 |=> 3 AND 3 + 4 |=> 7)

verification is the same as without parallelism

Work and span

work is usual serial time complexity

 $work < e_1, e_2 > = work(e_1) + work(e_2)$

span is parallel time complexity

 $span < e_1, e_2 > = max(span(e_1), span(e_2))$

Nergesort

```
fun split (l : int list) : int list * int list =
   case 1 of
       [] ⇒ ([] , [])
      | [ x ] => ([ x ] , [])
      | x :: y :: xs => let val (pile1 , pile2) =
                            split xs
                        in (x :: pile1 , y :: pile2)
                        end
fun merge (l1 : int list , l2 : int list) : int list =
   case (11 , 12) of
       ([], 12) => 12
      | (l1 , []) => l1
      | (x :: xs , y :: ys) =>
           (case x < y of
                true => x :: (merge (xs , 12))
               | false => y :: (merge (l1 , ys)))
fun mergesort (l : int list) : int list =
   case 1 of
       [] => []
      | [x] => [x]
      | _ => let val (pile1,pile2) = split l
             in
                 merge (mergesort pile1, mergesort pile2)
             end
```

[7,1,3,6,8,4,2,5]

[7,1,3,6,8,4,2,5]

[7,1,3,6]

[8,4,2,5]

[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7,1,3,6,8,4,2,5]

- $[8, 4, 2, \overline{5}]$ [7,1,3,6]
- [7,1][3,6] [8,4] [2,5]
- [7] [1] [3] [6] [8] [4] [2] [5]

[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[3,6] [8,4] [2,5] [7,1]

[8] [4] [2] [5] [7] [1] [3] [6]

W(n) = n + 2 W(n/2) is $O(n \log n)$

Span

[7,1,3,6,8,4,2,5]

- $[8, 4, 2, \overline{5}]$ [7,1,3,6]
- [7,1] [3,6] [8,4] [2,5]
- [8] [4] [2] [5]
- [7] [1] [3] [6]

Nergesort

on lists: O(n log n) work O(n) span

on trees: O(n log n) work O((log n)³) span

```
fun splitAt (t : tree , bound : int) : tree * tree =
case t of
    Empty => (Empty , Empty)
   I Node (1 , x , r) =>
     (case bound < x of
          true => let val (ll , lr) = splitAt (l , bound)
                   in (ll , Node (lr , x , r))
                   end
         | false => let val (rl , rr) = splitAt (r , bound)
                    in (Node (l, x, rl), rr)
                    end)
fun merge (t1 : tree , t2 : tree) : tree =
case t1 of
    Empty => t2
   I Node (l1 , x , r1) =>
     let val (12, r2) = splitAt (t2, x)
     in
         Node (merge (11, 12),
                x,
               merge (r1 , r2))
      end
fun mergesort (t : tree) : tree =
    case t of
       Empty => Empty
      I Node (1 , x , r) =>
         merge(merge (mergesort l , mergesort r),
                Node(Empty, x, Empty))
```

Design principles

keep work low (ideally work-efficient)

then minimize span

Brent's principle: time to run on processors is O(max(work/p,span))

Sequences

(* map f <x1, ..., xn> == <f x1, ..., f xn>work O(n)span 0(1)*) val map : $(a \rightarrow b) \rightarrow a = a = b = a$ (* reduce op b $\langle x1, \ldots, xn \rangle == x1$ op $x2 \ldots$ op xnwork O(n)span (log n) *) val reduce : (('a * 'a) -> 'a) -> 'a -> 'a seq -> 'a

n-body simulation

fun accelerations (bodies : body Seq.seq)
 : vec Seq.seq =
 Seq.map
 (fn b1 =>
 sum bodies (fn b2 => accOn (b1 , b2)))
 bodies

quadratic work

logarithmic span

Barnes-Hut

divide space recursively into quadrants, approximating contribution of bodies that are too far away by their center of mass

O(n log(n)) work

logarithmic span

Game tree search

Minimax: at each node, work is O(children) span is O(log children)

Alpha-beta pruning: work is better but span is linear

Jamboree: trade work for span

Data structures and algorithms

divide and conquerBFS/DFSsequencesshortest pathssets and tablesgraph contractabilityrandomizationtreapsdynamic programmingleftist heaps

Implementation

Nested parallelism can be realized in Nesl Manticore (SML) Parallel Haskell Cilk **TPL (C#/F#) OpenMP**
Parallelism

recognize the dependencies

deterministic parallelism

language-based cost model

asymptotic analysis

Objectives

computational thinking

imperative and functional programming

parallel algorithm design and analysis

specification and verification

Trade-offs

 Breadth vs depth Outward vs inward Motivation vs skills • Short- vs long-term • Systems vs theory • Jump in vs training wheels

CMU Intro Courses

Fundamentals of Computing

Activities

lecture lab/recitation

homework

lots of TA homework help time **lots** of TA grading time

Experiment

CMU courses can work elsewhere, with some adaptation to context

Wesleyan this spring: 2/3 of CMU Imperative Wesleyan next year: 3/4 of CMU Functional?