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Starting in 2011, Carnegie Mellon 
revised its intro CS curriculum

•Computational thinking [Wing]

•Specification and verification

•Parallelism
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Course Design
•Imperative computation (Fa’11):
Frank Pfenning, Tom Cortina, William Lovas 

•Functional computation (Sp’11):
me, Bob Harper

•Data structures and algorithms (Fa’12): 
Guy Blelloch, Margaret Reid-Miller,
Kanat Tangwongsan

taught and refined by many people since!



Status
•First group of students just graduated

•Courses are generally well-liked

•Anecdotally, students seemed stronger than 
before in some upper-level classes

•Preliminary studies by Carol Frieze indicate 
they preserve the women-CS fit at CMU



My role
•Designed Functional Computation

•Taught Spring’11, Fall’11, Spring’12

•Now at Wesleyan

•Taught Imperative Computation this spring; 
teaching Imperative next fall and Functional 
next spring



•Premier tech 
school

•Students 
admitted to CS

•~600 students 
per year in intro

•~150 CS majors 
per year

•Liberal arts 
school, strong in 
sciences

•Not

•~100 students per 
year in intro

•~30 CS majors
per year

CMU Wesleyan



• Imperative has a 
“basic 
programming” 
prereq

• Imperative has a 
math co-req

•Functional has a 
math prereq

•Many students 
have never 
programmed 
before 

•No math
pre/co-reqs, 
though many 
students have it

CMU Wesleyan



Hypothesis

Wesleyan this spring: 2/3rds of CMU Imperative

• less programming background

•shorter semester

•fewer student hours per week 

CMU courses can work elsewhere,
with some adaptation to context
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Computational 
Thinking

what vs how
correctness and safety
efficiency

randomness

modularity
functions as data

parallelism ephemerality vs 
persistence 

self-reference



Objectives

algorithm design and analysis

computational thinking

imperative and functional programming

specification and verification



Imperative
C0: teaching language based on C, designed by 

Frank Pfenning and Rob Arnold

functions, variables, loops, arrays, pointers&structs

type safe, bounds checked, garbage collected

rudimentary interfaces



Imperative
Then transition to C

memory management
void* and casting
function pointers



Imperative



Arrays



Search



Pointers and structs



Data structures



Functional
Standard ML

numbers, pairs, lists, trees, datatypes

functions as arguments and results

signatures, structures, functors

exceptions, mutation, IO



Functional
Why not

•Ocaml: no parallel implementation 
(Manticore for SML)

•Haskell: laziness complicates cost analysis

•F#: want the ML module system
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Analysis
big-O

worst case

amortized

expected case



Functional

trees

n-body simulation

persistent data structures

sorting
regular expression matching

game tree search

lists

balanced BSTs



Analysis

log

recurrence relations
closed forms
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Imperative
mutable data structures

arrays
searching

in-place sorting
linked lists

stacks
queues

unbounded arrays
priority queues

hash tables
DFS/BFS

tries
spanning trees

union find

always have verification in mind!
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parallel algorithm design and analysis
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Specification and 
Verification

Imperative: pre/post-conditions and 
loop invariants, expressed using 

boolean-valued functions

Functional: mathematical statements 
about calculational behavior of programs



Slogans
proof-oriented programming

deliberate programming

proof-directed debugging



Imperative



Specifications
safety

behavioral

data structure invariants



Safety



Behavior



Behavior



Proofs
Loop invariants hold initially

Loop invariants preserved by one iteration

Loop invariants imply the postcondition





Preservation of LI

0 ilower

A[lower,i) sorted

A[lower,i) <= A[i,upper)

upper

A[s]

A[lower,i+1) sorted

A[lower,i+1) <=
A[i+1,upper)A[s] <= A[i+1,upper)



Binary Search



Binary Search

Assignment: binary 
search for first 

occurrence
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Preservation



Data structure invs



Heaps



Data structure invs



Contracts



Functional



Specifications

Beyond requires/ensures

Specs relating multiple functions

Propositions, not booleans



Computing by 
calculation



Contextual
equivalence





Props, not bools
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Props, not bools

want to reason logically about existential, 
not about try-all-splits implementation



Props, not bools

inner inductive definition of L*



Props, not bools



Regexp



Regexp



Regexp

termination bug



Proof-directed 
debugging



Modularity



Representation invs



Representation invs





Verification
safety

behavioral specifications

representation invariants + modularity

booleans and propositions

contracts



Slogans
proof-oriented programming

deliberate programming

proof-directed debugging



Parallelism



Parallelism

deterministic parallelism

language-based cost model

asymptotic analysis

recognize the dependencies



Parallelism != 
Concurrency

parallelism: multiple processors/cores. 
property of the machine.

concurrency: interleaving of threads. 
property of the application.



Parallelism != 
Concurrency

sequential concurrent

serial traditional 
algorithms

traditional OS

parallel deterministic 
parallelism

general 
parallelism



Parallel Calculation



Parallel Calculation

verification is the same as without parallelism



Work and span
work is usual serial time complexity

work <e1,e2> = work(e1) + work(e2) 

span is parallel time complexity

span <e1,e2> = max(span(e1), span(e2))



Mergesort
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W(n) = n + 2 W(n/2)     is O(n log n)



Span
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]



Span
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]



Span
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]

S(n) = n + S(n/2)      is O(n)



Mergesort
on lists: O(n log n) work

O(n) span

on trees: O(n log n) work
O( (log n)3 ) span





Design principles

keep work low (ideally work-efficient)

then minimize span



Brent’s principle: time to run on
p processors is O(max(work/p,span))



Sequences



n-body simulation

quadratic work

logarithmic span



Barnes-Hut
divide space recursively into quadrants,

approximating contribution of bodies that 
are too far away by their center of mass  

O(n log(n)) work

logarithmic span



Game tree search

Minimax: at each node,
work is O(children)
span is O(log children)

Alpha-beta pruning:
work is better
but span is linear

Jamboree: trade work for span



Data structures 
and algorithms

divide and conquer
sequences

sets and tables
randomization

dynamic programming

BFS/DFS
shortest paths

graph contractability
treaps

leftist heaps



Implementation

Nesl
Manticore (SML)
Parallel Haskell

Cilk
TPL (C#/F#)

OpenMP

Nested parallelism can be realized in 



Parallelism

deterministic parallelism

language-based cost model

asymptotic analysis

recognize the dependencies
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Activities

homework

lecture

lab/recitation

lots of TA homework help time
lots of TA grading time



Experiment

Wesleyan this spring: 2/3 of CMU Imperative

CMU courses can work elsewhere,
with some adaptation to context

Wesleyan next year: 3/4 of CMU Functional?


