
Verification and Parallelism
in Intro CS

Dan Licata
Wesleyan University

Starting in 2011, Carnegie Mellon
revised its intro CS curriculum

•Computational thinking [Wing]

•Specification and verification

•Parallelism

CMU Intro Courses
Fundamentals of Computing

Imperative
Computation

Functional
Computation

Computer
Systems

Data Structures
and Algorithms

Software
Construction

CMU Intro Courses
Fundamentals of Computing

Imperative
Computation

Functional
Computation

Computer
Systems

Data Structures
and Algorithms

Software
Construction

Course Design
•Imperative computation (Fa’11):
Frank Pfenning, Tom Cortina, William Lovas

•Functional computation (Sp’11):
me, Bob Harper

•Data structures and algorithms (Fa’12):
Guy Blelloch, Margaret Reid-Miller,
Kanat Tangwongsan

taught and refined by many people since!

Status
•First group of students just graduated

•Courses are generally well-liked

•Anecdotally, students seemed stronger than
before in some upper-level classes

•Preliminary studies by Carol Frieze indicate
they preserve the women-CS fit at CMU

My role
•Designed Functional Computation

•Taught Spring’11, Fall’11, Spring’12

•Now at Wesleyan

•Taught Imperative Computation this spring;
teaching Imperative next fall and Functional
next spring

•Premier tech
school

•Students
admitted to CS

•~600 students
per year in intro

•~150 CS majors
per year

•Liberal arts
school, strong in
sciences

•Not

•~100 students per
year in intro

•~30 CS majors
per year

CMU Wesleyan

• Imperative has a
“basic
programming”
prereq

• Imperative has a
math co-req

•Functional has a
math prereq

•Many students
have never
programmed
before

•No math
pre/co-reqs,
though many
students have it

CMU Wesleyan

Hypothesis

Wesleyan this spring: 2/3rds of CMU Imperative

• less programming background

•shorter semester

•fewer student hours per week

CMU courses can work elsewhere,
with some adaptation to context

Course Design

Imperative
Computation

Functional
Computation

Data Structures
and Algorithms

Course Design

Imperative
Computation

Functional
Computation

Data Structures
and Algorithms

parallelism

Course Design

Imperative
Computation

Functional
Computation

Data Structures
and Algorithms verification

parallelism

Trade-offs
•Breadth vs depth

•Outward vs inward

•Motivation vs skills

•Short- vs long-term

•Systems vs theory

•Jump in vs training wheels

Trade-offs
•Breadth vs depth

•Outward vs inward

•Motivation vs skills

•Short- vs long-term

•Systems vs theory

•Jump in vs training wheels

Objectives

algorithm design and analysis

computational thinking

imperative and functional programming

specification and verification

Computational
Thinking

what vs how
correctness and safety
efficiency

randomness

modularity
functions as data

parallelism ephemerality vs
persistence

self-reference

Objectives

algorithm design and analysis

computational thinking

imperative and functional programming

specification and verification

Imperative
C0: teaching language based on C, designed by

Frank Pfenning and Rob Arnold

functions, variables, loops, arrays, pointers&structs

type safe, bounds checked, garbage collected

rudimentary interfaces

Imperative
Then transition to C

memory management
void* and casting
function pointers

Imperative

Arrays

Search

Pointers and structs

Data structures

Functional
Standard ML

numbers, pairs, lists, trees, datatypes

functions as arguments and results

signatures, structures, functors

exceptions, mutation, IO

Functional
Why not

•Ocaml: no parallel implementation
(Manticore for SML)

•Haskell: laziness complicates cost analysis

•F#: want the ML module system

Functional

Functional

Objectives

algorithm design and analysis

computational thinking

imperative and functional programming

specification and verification

Imperative
arrays
searching

linked lists

ephemeral data structures

in-place sorting

stacks
queues

priority queues
hash tables

unbounded arrays

DFS/BFS
balanced BSTs
tries
spanning trees
union find

Imperative
arrays
searching

linked lists

ephemeral data structures

in-place sorting

stacks
queues

priority queues
hash tables

unbounded arrays

DFS/BFS

Analysis
big-O

worst case

amortized

expected case

Functional

trees

n-body simulation

persistent data structures

sorting
regular expression matching

game tree search

lists

balanced BSTs

Analysis

log

recurrence relations
closed forms

Data structures
and algorithms

divide and conquer
sequences

sets and tables
randomization

dynamic programming

BFS/DFS
shortest paths

treaps
leftist heaps

k-grams

Functional
lists
trees

sorting
n-body simulation
game tree search

DS&A
divide and conquer

sequences
sets and tables
randomization

BFS/DFS
shortest paths

treaps
dynamic programming

leftist heaps

Functional
lists
trees

sorting
n-body simulation
game tree search

DS&A
divide and conquer

sequences
sets and tables
randomization

BFS/DFS
shortest paths

treaps
dynamic programming

leftist heaps

always have parallelism in mind!

lists
trees

sorting
n-body simulation
game tree search

Functional/
DS&A

divide and conquer
sequences

sets and tables
randomization

BFS/DFS
shortest paths

treaps
dynamic programming

leftist heaps

Imperative
mutable data structures

arrays
searching

in-place sorting
linked lists

stacks
queues

unbounded arrays
priority queues

hash tables
DFS/BFS

tries
spanning trees

union find

lists
trees

sorting
n-body simulation
game tree search

Functional/
DS&A

divide and conquer
sequences

sets and tables
randomization

BFS/DFS
shortest paths

treaps
dynamic programming

leftist heaps

Imperative
mutable data structures

arrays
searching

in-place sorting
linked lists

stacks
queues

unbounded arrays
priority queues

hash tables
DFS/BFS

tries
spanning trees

union find

always have verification in mind!

Objectives

parallel algorithm design and analysis

computational thinking

imperative and functional programming

specification and verification

Specification and
Verification

Specification and
Verification

Imperative: pre/post-conditions and
loop invariants, expressed using

boolean-valued functions

Functional: mathematical statements
about calculational behavior of programs

Slogans
proof-oriented programming

deliberate programming

proof-directed debugging

Imperative

Specifications
safety

behavioral

data structure invariants

Safety

Behavior

Behavior

Proofs
Loop invariants hold initially

Loop invariants preserved by one iteration

Loop invariants imply the postcondition

Preservation of LI

0 ilower

A[lower,i) sorted

A[lower,i) <= A[i,upper)

upper

A[s]

A[lower,i+1) sorted

A[lower,i+1) <=
A[i+1,upper)A[s] <= A[i+1,upper)

Binary Search

Binary Search

Assignment: binary
search for first

occurrence

Data structure invs

Data structure invs

Representation invs

Preservation

Data structure invs

Heaps

Data structure invs

Contracts

Functional

Specifications

Beyond requires/ensures

Specs relating multiple functions

Propositions, not booleans

Computing by
calculation

Contextual
equivalence

Props, not bools

Props, not bools

Props, not bools

want to reason logically about existential,
not about try-all-splits implementation

Props, not bools

inner inductive definition of L*

Props, not bools

Regexp

Regexp

Regexp

termination bug

Proof-directed
debugging

Modularity

Representation invs

Representation invs

Verification
safety

behavioral specifications

representation invariants + modularity

booleans and propositions

contracts

Slogans
proof-oriented programming

deliberate programming

proof-directed debugging

Parallelism

Parallelism

deterministic parallelism

language-based cost model

asymptotic analysis

recognize the dependencies

Parallelism !=
Concurrency

parallelism: multiple processors/cores.
property of the machine.

concurrency: interleaving of threads.
property of the application.

Parallelism !=
Concurrency

sequential concurrent

serial traditional
algorithms

traditional OS

parallel deterministic
parallelism

general
parallelism

Parallel Calculation

Parallel Calculation

verification is the same as without parallelism

Work and span
work is usual serial time complexity

work <e1,e2> = work(e1) + work(e2)

span is parallel time complexity

span <e1,e2> = max(span(e1), span(e2))

Mergesort

Work
[7,1,3,6,8,4,2,5]

Work
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

Work
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

Work
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]

Work
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]

W(n) = n + 2 W(n/2) is O(n log n)

Span
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]

Span
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]

Span
[7,1,3,6,8,4,2,5]

[7,1,3,6] [8,4,2,5]

[7,1] [3,6] [8,4] [2,5]

[7] [1] [3] [6] [8] [4] [2] [5]

S(n) = n + S(n/2) is O(n)

Mergesort
on lists: O(n log n) work

O(n) span

on trees: O(n log n) work
O((log n)3) span

Design principles

keep work low (ideally work-efficient)

then minimize span

Brent’s principle: time to run on
p processors is O(max(work/p,span))

Sequences

n-body simulation

quadratic work

logarithmic span

Barnes-Hut
divide space recursively into quadrants,

approximating contribution of bodies that
are too far away by their center of mass

O(n log(n)) work

logarithmic span

Game tree search

Minimax: at each node,
work is O(children)
span is O(log children)

Alpha-beta pruning:
work is better
but span is linear

Jamboree: trade work for span

Data structures
and algorithms

divide and conquer
sequences

sets and tables
randomization

dynamic programming

BFS/DFS
shortest paths

graph contractability
treaps

leftist heaps

Implementation

Nesl
Manticore (SML)
Parallel Haskell

Cilk
TPL (C#/F#)

OpenMP

Nested parallelism can be realized in

Parallelism

deterministic parallelism

language-based cost model

asymptotic analysis

recognize the dependencies

Objectives

parallel algorithm design and analysis

computational thinking

imperative and functional programming

specification and verification

Trade-offs
•Breadth vs depth

•Outward vs inward

•Motivation vs skills

•Short- vs long-term

•Systems vs theory

•Jump in vs training wheels

CMU Intro Courses
Fundamentals of Computing

Imperative
Computation

Functional
Computation

Computer
Systems

Data Structures
and Algorithms

Software
Construction

Activities

homework

lecture

lab/recitation

lots of TA homework help time
lots of TA grading time

Experiment

Wesleyan this spring: 2/3 of CMU Imperative

CMU courses can work elsewhere,
with some adaptation to context

Wesleyan next year: 3/4 of CMU Functional?

