{-# OPTIONS --rewriting #-}
open import Agda.Primitive using (Level;lsuc;_⊔_;lzero)
open import Lib
open import Interval
open import Cofibs
open import Kan
open import Equiv
open import Nat
open import universe.Universe
module universe.Nat where
comNat : ∀ {l1 : Level} → relCom {Γ = Unit{lzero}} (\ _ → Nat{l1})
comNat = relCom-constant Nat (hcomDec decNat)
Nat-code-universal : ∀ {@♭ l1 : Level} → (Unit{lzero} → U {l1})
Nat-code-universal = code _ (\ _ → Nat) comNat
Nat-code : ∀ {@♭ l1 l2 : Level} {Γ : Set l2} → (Γ → U {l1})
Nat-code{l1}{l2} _ = Nat-code-universal{l1} <>
Nat-code-stable : ∀ {@♭ l1 l2 l3 : Level} {Γ : Set l1} {Δ : Set l3}
{θ : Δ → Γ}
→ ((Nat-code{l2}{l1}) o θ) == Nat-code{l2}{l3}
Nat-code-stable = id
Nat-code-El : ∀ {@♭ l1 l2 : Level} {Γ : Set l2} → (θ : Γ) → El (Nat-code{l1}{l2}{Γ = Γ} θ) == Nat
Nat-code-El θ = id